INTERGLAD 利用例

本項には、特性データの検索、解析、特性予測および材料設計(組成最適化)、また構造データの検索、 解析の基本的な利用例を示します。

特性データの検索と解析

- 1. 複雑な組成条件による検索 リン酸塩ガラスの熱膨張係数
- 2. 特性の三角図解析 SiO₂-Na₂O-TiO₂系ガラスの熱膨張係数
- 3. 特性間の相関の XY プロット解析 屈折率とアッベ数
- 4. 高温特性補間機能を活用した検索 ホウケイ酸塩ガラスの高温粘度
- 5. 商品検索 FRP 用高強度ガラス繊維

特性予測(特性計算式)

6. 特定組成のガラスの特性予測 - ホウケイ酸塩ガラス

特性予測·組成最適化(重回帰分析)

- 7. 特性についての予測式の導出 亜鉛ケイ酸塩ガラスの密度
- 8. 特性予測 亜鉛ケイ酸塩ガラスの密度
- 9. 組成最適化 特定密度の亜鉛ケイ酸塩ガラス
- 10. 組成最適化(自動計算) 特定密度の亜鉛ケイ酸塩ガラス
- 11. 特性予測 アルカリ土類ケイ酸塩ガラスのヤング率
- 12. 特性予測(3次式) ホウケイ酸塩ガラスの密度

構造データの検索と解析

- 13. 組成と構造と相関調査 SiO2量と架橋酸素の割合
- 14. 構造因子間の相関調査 アルカリケイ酸塩ガラスの Q²と非架橋酸素割合

本項の記載方法について

1) 各画面で操作等が必要な箇所に下記の色別の囲みマークを記しています。

選択・設定	:	
ボタン等操作	:	\bigcirc
確認	:	\bigcirc

- 2) 操作方法の詳細については、各項目の冒頭に記したユーザーズマニュアル参照箇所に記載されています。
- 3) 検索結果のデータ件数およびデータ内容は INTERGLAD のバージョン (システム、特性データ、構造デー

タ)により変わりますので、参考値、参考内容となります。

(本例では Ver.8.2.0.2、GP_42_2020.mdb、GS_37_2020.mdb を使用しています)

1. 複雑な組成条件による検索 - リン酸塩ガラスの熱膨張係数

1) 検索条件設定(特性(詳細)検索画面) → 検索実施

e View	v Tool	s Help														_
2	8	? 🗑 😫 🗳									INTE	RGLAD	8: G	lass	Prop	e
imple S	Search	Detail Search	>													
												DB	ite			
ate	ilass	>	Gol	f-Data 📃 G	lass-F	Formin	ng Region	n Dat	a			2	INTERGL	AD Da	ıta	
mposi	tion											- (Server	ver		ı.
e mas	s%)	mol% 🔾 at% 🚺	Perio	dic Table	Cli	ear Co	mponen	ıt			Numeric	al 🗆	User Da	ta		
tain		Component		Component		Com	toonont		Compone	nt 04 min	06max					
	ND	AI203	OR	Component	OR	COM	ponent	OR	Compone	10.0	0 20.00	App	earance,	, Featu	ire, Pro	ce
	ND	Na20	OR	(20)	OR			OR				AN	D			
	OT	C1203	OR	CrO3	OR			OR				AN	D			
		-	OR		OR			OR	1				Sol-Gel			
	ND												201-001			
Al	ND ND ystem	<= Total of Main C	OR	ients Co iller / Crystal	OR mmer	rcial (U strate	Jser) Gla	OR	Sol-Gel Mate	D	evelop	Usa	pe			
All	ND ND ystem	Phosphate	Compor	ients Co iller / Crystal	OR mmer / Subs	rcial (U strate	Jser) Gla	OR	Sol-Gel Mate	erial D	evelop		2 2			
All	ND ND ystem	Phosphate	OR	ients Co iller / Crystal	OR mmei / Subs	rcial (U strate	Jser) Gla	OR	Sol-Gel Mate	prial D	evelop	Usa OI OI First	a la			
All	ND ND ystem	<= Total of Main O	OR	ients Co iller / Crystal	OR mmer / Subs	rcial (U	Jser) Gla	ISS	Sol-Gel Mate	rial	evelop	Usa Of Of	ape R R Author			
AND AND AND	ND ND ystem	Phosphate	Compor	ients Co iller / Crystal	OR mmer	rcial (U strate	Jser) Gla	ISS	Sol-Gel Mate	rial	evelop ension Search	Usa Oi Oi First	ae २. २. Author			
AND AND AND	ND ND ystem	Control of Main Control of Mai	Compor	iller / Crystal	OR mmer / Subs	rcial (U	Jser) Gla Value I	ISS	Sol-Gel Mate	erial	evelop	Usa Oi Oi First	pe २ २ २ Author			
AND AND AND	ND ND ystem	Cepecifier	Compor	iller / Crystal	OR mmer / Subs	rcial (U strate	Jser) Gla Value I	OR ISS	Sol-Gel Mate	prial	evelop ension Searct	Usa Of Of First J Glass Max D	ge २ २ Author ID	10	00	
AND AND AND AND	ND ND ystem	Phosphate Specified	OR Compor	ients Co iller / Crystal	OR mmen / Subs	rcial (U strate	Jser) Gla Value I	OR ISS	Sol-Gel Mate	rial	evelop	Usa Of Of First J Glass Max D	ae R R Author ID	10	00	
AND AND AND AND AND AND AND AND	ND ND ystem	Phosphate Period	OR Compor	ents Co iller / Crystal	Unit mmei	rcial (U strate	Jser) Gla	OR ISS	Sol-Gel Mate		evelop	Glass Max D	age R R Author ID	10	00	
AND AND AND Operty AND AND	ND ND ystem V	Phosphate Specifier pansion Coeff (Typ	OR Compor	Comme Comme Comme	Unit Unit	rcial (U strate	Jser) Gla	OR ISS	Sol-Gel Mate	rial	ension Search	Glass Max D	Author ID	10	00	
AND AND Operty ND ND ND ND ND ND ND ND ND ND	ND ND ystem v	Phosphate Specifier	OR Compor	eents Co iller / Crystal Comme Comme Comme	Unit unit	rcial (U strate	Jser) Gla	Ulin	Sol-Gel Mate	erial	evelop	Usa Oi Oi First J Glass Max D	ape R R Author ID Iata	10	00	

- Main 画面で[Search Property Data]ボタンをクリック して特性検索画面を開き、検索条件を設定します。
- ・単位のデフォルトが mol%のため、mass%を選択しま す。
- ・Na2O、K2Oは同一行に設定します。この場合、周期表 で同時には設定できません。
- Cr₂O₃, CrO₃は周期表でのCr選択で一度に設定できます。
- ・検索条件設定の順序は自由です。
- ・検索条件が複雑になるほど検索に時間がかかります。

2) 検索結果(特性検索結果画面)

- ・検索ガラス数(Total Number)、本例では 258 件に注目 します。
- ・検索条件に設定した組成成分、特性データ他の表が表 示されます。

3) 検索結果の利用

K INT	ERGLA	D 8 : Data List of Prop	perty								-		×
File T	ools I	Help											
4	2	1 🔁 🖶 🖓		🕌 🗮		1 2 🛛 🕐	6		I	NTERGLAD 8	Glas	s Prop	perty
		Data Source	List			\bigcirc	Detail		informat	ion Comp	onent		ŕ
		Total Number	258	Compor	nent Ur	iit mass% 💌	Delete		455	Prop	erty		
		Number of Source	s 66	Prop	erty Ur	it Common 💌	Undo	Add	itivity Eq	uation Struc	ture		
Delete	No	Glass No.	Data	a Source	Year	Data Source Number	AI2O3	Na2O	К2	Expansion Coeff (Ty. (10-7/K)	Þ		-
	5	GC20-051404	Corning	Inc. (US)		4602	14.00	0.89		5.4E+0	•		-
	162	GI20-191886R	NGF's Ac	ditional N	2001	v. 004 p. 0009	10.26	4.00E		5.617E+01			
	69	GP20-125149	US Pater	nt Schott	1992	A5173456	13.33		2.01	5.934E+01			
	85	GP20-125482	Europea	n Patent	1992	A0492577	13.33		2.01	5.934E+01			
	135	GP20-154889	Japanes	e Patent	1994	A040743	11.96		1.80	5.934E+01			
	73	0000 405457	LIC Datas	A Coholi	1000	A6172468	11.06		0.74	6.04E+01			

- ・各項目毎にソート(並び替え)が可能です。
 [Shift] キーを押しながら表の項目ラベルをクリックします。
- ・本例では熱膨張係数で昇順にソートし、熱膨張係数が 最小のガラスを選択し(その行をクリックして背景水

色とし)、[Detail]ボタンをクリックし、詳細データを 調べます。

特性詳細画面

INTERGLAD	8 : Detail Data of Pro	operty			x
File Tools H	lelp				
🗃 🖓 [2 😥 😂			INTERGLA	D8: Glass Propert
Glass No.		State	Properties		
GC20	0-051404	Glass	ID Specified	Value Unit	Condition
			0510 Density at RT	2520.0 kg/m3	
Composition			0540 Young's Modulus at RT	7.096E10 Pa	
Condition of	Data	Glass System	1021 Expansion Coeff (0~300C)	54.0 10-7/K	
Т	arget	Phosphate	1113 T at 1E4 dPa.s (Working P)	1306.0 K	
Components		Alumino-Silicate	1116 T at 1E7.6(7.65) dPa.s (Sof P)	1033.0 K	
			1119 T at 1E13 dPa.s (Annealing P)	833.0 K	
1	mass%		1122 T at 1E14 dPa.s (Strain P)	792.0 K	
802	18.37	Filler / Crystal / Substrate	2018 Refract Index 589.3nm D	1.51	
AI2O3	14.00	/ Ratio Shape	5010 Water Durability Other	3.0	
LI20	0.20		5011 Water Durability ASTM	3.0	
Nazo	0.89				
FeO	1.29-				
ZnO	4.17		Authors		
SnO	2.68 🗸	Sol-Gel Material			
Commercial	Glass		Data Source		
Com	ing 4603		Corning Inc. (US)		
com	ing 4002		4602		
Appearance, F	Feature, Process	Usage	Memo		
		Wavelength Selector			
			Note		
			Heat Absorbing		
Thermal Treat	tment			inura 🗶 Class	

出典リスト画面

🏷 IN	ITERGLAD 8 : Data Source Lis	t			-	
File	Tools Help					
	a 🖓 🕐 🕼			INT	ERGLAD 8: Data S	Source List
	Data Source	Year	Data Source Number	Author	Memo	Num of Data
1	Physics and Chemistry o	1997	Vol. 038 Page 0015	Montagne L., Palavit G.,		10 -
2	J. Materials Science	1997	Vol. 032 Page 5851	Donald I.W., Metcalfe B.L		70
3	European Patent	1990	A0356746			58
4	US Patent	2013	A0330600		Claim: 35-50mol%P2O5	8 =
5	J. Non-Crystalline Solids	2001	Vol. 288 Page 0008	Karabulut M., Melnik E., S	Melting : in alumina cruci	11
6	US Patent	2017	A9539665		Claim: 35-50mol%P2O5,	8
7	US Patent	2004	A6784128			10
8	Japanese Patent	2007	A290886			10
9	Data Book of Glass Com	1991	Vol. 001 Page 0120			5
10	Glass Physics & Chemis	2004	Vol. 030 Page 0425	Batyaev I.M., Leonov A.V.	Melting : in alundum cru	1
11	US Patent	1992	A5173456			61
12	European Patent	2003	A1275622			10
13	Glass Technology	1991	Vol. 032 Page 0166	Peng Y.B., Day D.E.		26
14	Japanese Patent	1994	A107428			8
15	J. American Ceramic Soc.	1981	Vol. 064 Page 0206	Abe Y., Kawashima K., S		2
16	Japanese Patent	1981	A051574			10
17	US Patent	2003	A0153450			10
18	US Patent	2005	A0159291			8
19	J. Non-Crystalline Solids	1997	Vol. 222 Page 0396	Brow R.K., Tallant D.R.		24 -
			СІ	ose		\bigcirc

- ・また、検索結果画面より[Data Source List]ボタンをク リックし、出典リスト画面を開き、各出典毎のガラス 数をチェックします。
- ・[Num of Data]欄が各出典毎のガラス数です。
- ・必要に応じて三角図、XYプロットなどの解析を行います。

2. 特性の三角図解析 - SiO₂-Na₂O-TiO₂系ガラスの熱膨張係数 SiO₂-Na₂O-TiO₂を主成分とするガラスについて、組成と熱膨張係数との関係を調べます

<マニュアル第3章B、C.1、第4章2、3.1参照>

1) 検索条件設定(特性(詳細)検索画面) → 検索実施

- ・成分単位として mass%を選択します。
- ・3成分合計を90mass%以上に設定します。
- ・熱膨張係数はデータが集まりやすい Expansion Coeff
 (Typical)を選択します。

2) 検索結果(特性検索結果画面)

🔯 INTE	RGLAD	8 : Data List of Prop	perty								-		×
File To	ols H	elp	~										
4	2	38	🚕 😫 😹 🗮		1 🚆 🖬 🙎) 😺 😺		1	NTERG	LAD 8:	Glass	s Prop	erty
	[Data Source I	List			Detail		Informa	tion	Compo	nent		
	Ō	Total Number	234 Compor	ent Un	it mass% 💌	Delete		1.55	1	Prope	erty		
	Ī	Number of Source	s 41 Prop	erty Un	it Common 👻	Undo	Ade	ditivity Eq	uation	Struct	ure		
Delete	No.	Glass No.	Data Source	Year	Data Source Number	SiO2	Na2O	TiO2	Expansion (10	n Coeff (Ty			
	1	GB02-006032	Handbook of Glass	1986	v. 001 p. 0163	67.08	15.21	17.71		8.4E+01			
	2	GB02-006033	Handbook of Glass	1986	v. 001 p. 0163	51.85	15.56	32.58		1.1E+02			-
	3	GB02-006034	Handbook of Glass	1986	v. 001 p. 0163	49.04	20.56	30.40		1.12E+02			- FL
	4	GB02-006035	Handbook of Glass	1986	v. 001 p. 0163	35.56	20.57	43.87		1.08E+02			
	5	GB02-006036	Handbook of Glass	1986	v. 001 p. 0163	42.29	21.44	36.27		1.16E+02			
	6	GB02-006037	Handbook of Glass	1986	v. 001 p. 0163	69.61	23.39	6.99		1.1E+02			
	7	GB02-006038	Handbook of Glass	1986	v. 001 p. 0163	50.68	22.51	26.81		1.07E+02			
	8	GB02-006039	Handbook of Glass	1986	v. 001 p. 0163	30.71	22.63	46.66		1.15E+02			
	9	GB02-006040	Handbook of Glass	1986	v. 001 p. 0163	58.00	25.69	16.31		1.18E+02			

3) 三角図表示

- ・234件が抽出されます。
- ・3角図アイコンをクリックし、3角図画面を開きます。

- ・三角図画面で、[Select 3 Component]ボタンをクリックし、SiO2、Na2O、TiO2の3成分を選択し、合計量として 90%、表示項目として Expansion Coeff (Typical)を 選択します。
- ・各プロット点の色により熱膨張係数の高低が一覧でき、
 三角図の中央付近の組成のガラス(赤色)が最も熱膨張
 係数が高く、右上方向に行く(SiO2 100%に近づく)ほど
 低くなる傾向があることがわかります。

- ・各点の出典は、各点にマウスを当てると吹出しに現われ ます。また、各点の詳細画面は[Detail]ボタンをクリック してボタンをアクティブにした上で、各点をクリックす ることにより開き内容を確認することができます。
- ・[Glass-Forming Region]ボタンをクリックすることによ りガラス化範囲データを表示することができます。
- ・ガラス化範囲データの○はガラス化する組成、
 ×はガラス化しない組成です。このガラス化範囲データはあくまでも3成分の和が100%の場合のデータであるため、3成分の和が90%以上としてプロットされたこの例の場合、ガラス化範囲データに当てはまらないデータもあるかもしれません。
- ・なお、各点の組成がガラス化しているかどうかは詳細画 面の State で確認できます。
- ・また、ガラス化範囲データの各点の出典もプロット点と 同様に[Detail]ボタンを使って確認することができます。

・また、画面左のスライドバーを動かすことにより、三角
図中の点の特性値範囲を変えることができます。左図の
例は熱膨張係数を 100.4×10⁻⁷/K 以下のみとし、さらに
[Zoom] ボタンにより SiO₂(100%)、 Na₂O(50%)、
TiO₂(50%)の三角図としたものです。

3. 特性間の相関の XY プロット解析 ー 屈折率とアッベ数

ガラスの屈折率とアッベ数の関係を調査します

1) 検索条件設定(特性(詳細)検索画面) → 検索実施

2) 検索結果(特性検索結果画面)

<マニュアル第3章B、C.2、第4章2、3.2参照>

- ・ガラス状態として Glass を選択します。
- ・ガラスの屈折率には色々な波長の光によるデータがありますが、この例では代表的な He の d 線(587.6nm)のデータを抽出します。
- アッベ数の種類も複数ありますが、d線の屈折率ndに対応した(nd-1)/(nF-nc)を選択します。
- ・特性数値データのみを選択する[Numerical]チェックボ ックスにチェックを入れます。
- ・出典としては、Patentを除きます。
- ・データ抽出数が多いと思われるため、Max Data を 5000 とします。
- ・3399件のデータが抽出されます。

*	æ 6	3 8 0				?	6		INTERGL	AD 8: Glas	s Prope	rty
		Data Source I	List				Detail	Info	rmation	Component		P
	\langle	Total Number	3399 Comp	onent Uni	it mol%	-	Delete	•	·~*,I	Property		
		Number of Sources	2293 Pro	perty Uni	t Common	-	Undo	Additiv	ity Equation	Structure		
Delete	No.	Glass No.	Data Source	Year	Data So Numi	ber	Refract In	dex 687.6	Abbe Value (nd-	-1)/(
	1	GJ05-008626	Glass Science and .	1987	. 060 p. 023	34		1.502	6.56	E+01	[
	2	GJ05-008627	Glass Science and .	1987	. 060 p. 023	34		1.502	6.62	E+01		F
	3	GJ05-008628	Glass Science and	1987	. 060 p. 023	34		1.503	6.652	E+01		
	4	GJ05-008629	Glass Science and	1987	. 060 p. 023	34		1.502	6.665	E+01		
	5	GJ05-008630	Glass Science and	1987	. 060 p. 023	34		1.503	6.67	E+01		
	6	GJ05-008631	Glass Science and	1987	. 060 p. 023	34		1.503	6.659	E+01		
	7	GJ05-008632	Glass Science and	1987	. 060 p. 023	34		1.504	6.685	E+01		
	8	GJ05-008633	Glass Science and	1987	. 060 p. 023	34		1.504	6.722	E+01		
	9	GJ05-008634	Glass Science and	1987	. 060 p. 023	34		1.503	6.723	E+01		
	10	GJ01-014872	J. Ceramic Soc. Ja	1985	. 093 p. 049	98		1.462	6.75	E+01		
	11	GB03-017329	Handbook of Glass.	1987	.00C p.09	10		1.611	5.35	E+01		
	12	GB03-017330	Handbook of Glass.	1987	. 00C p. 09	10		1.621	5.32	E+01		
	13	GB03-017331	Handbook of Glass.	1987	. 00C p. 09	10		1.637	5.23	E+01		
	14	GB03-017332	Handbook of Glass.	1987	. 00C p. 09	10		1.644	5.19	E+01		
	15	GB03-017333	Handbook of Glass	1987	00C p.09	10		1663	5.03	E+01		

3) XY プロット解析

- [XY Plot]アイコンより XY プロットを作成し、3399件の抽出されたガラスのアッベ数(nd-1)/(nF-nc)と屈折率 ndの分布を一覧できます。
- ・本図ではX軸のアッベ数について、スケールをプルダウ ンメニューにより倒置形(Reverse)(左の方の数値が大き い)としています。また、Tools/Option(Axis)より、横軸、 縦軸の範囲、軸表示をわかりやすいよう変換しています。

4. 高温特性補間機能を利用した検索 - ホウケイ酸塩ガラスの高温粘度

ホウケイ酸塩ガラスについて、700℃の粘度データを検索します

<マニュアル第3章B、C.3、第4章2、3.3参照>

1) 検索条件設定(特性(詳細)検索画面) → 検索実施

- ・ガラス状態は Glass とし、組成はガラス系の Boro-Silicate のみの選択とします。
- ・特性については、Viscosity at 700℃と設定し、数値 [Numerical]および拡張検索[Extension Search]チェッ クボックスにチェックを入れます。

2) 検索結果(特性検索結果画面)

Dinter	RGLAD	8 : Data List of Pro	perty						-	• ×
+	2	88		딇긢	2	6		INTERGL	AD 8: Glass	Property
		Data Sourc	e List	Ŭ		Detail	Inf	formation	Component	
	0	Total Number	1017 Com	ionent Un	it mol% 💌	Delete		*, -, *,/	Property	
		Number of Source	es 205 Pr	operty Un	it Common 👻	Undo	Additi	vity Equation	Structure	
Delete	No.	Glass No.	Data Source	Year	Data Source Number	Viscosity (dPa	at 700C			
	1	GJ02-000026	Glass Science and .	1983 v.	056 p. 0125		_			-
	2	GB04-004679	Handbook of Glass.	1986 v.	001 p. 0299					5
	3	GB04-004680	Handbook of Glass.	1986 v.	001 p. 0299	1	2.692E+01			
	4	GB04-004681	Handbook of Glass.	1986 v.	001 p. 0299		1.0E+01			
	5	GB04-004682	Handbook of Glass.	1986 v.	001 p. 0299					
	6	GB04-004683	Handbook of Glass.	1986 v.	001 p. 0299					
	7	GB04-004684	Handbook of Glass.	1986 v.	001 p. 0299					
	8	GJ05-005435	J. American Cerami.	1980 v.	063 p. 0126		2.0E+10			
	9	GJ05-010069	J. American Cerami.	1974 v.	057 p. 0109					
	10	GJ05-010070	J. American Cerami.	1974 v.	057 p. 0109					
	11	GB05-010245	Handbook of Glass.	1986 v.	001 p. 0243					
	12	GB05-010246	Handbook of Glass.	1986 v.	001 p. 0243					
	13	GB05-010247	Handbook of Glass.	1986 v.	001 p. 0243					
	14	GB05-010248	Handbook of Glass.	1986 v.	001 p. 0243					
	15	GB05-010249	Handbook of Glass.	1986 v.	001 p. 0244	1	1.622E+03			
	16	GB05-010250	Handbook of Glass.	1986 v.	001 p. 0244					
	17	GB05-010253	Handbook of Glass.	1986 v.	001 p. 0244	1	.162E+03			
	18	GB05-010254	Handbook of Glass.	1986 v.	001 p. 0244					
	19	GB05-010255	Handbook of Glass.	1986 v.	001 p. 0244	1	.514E+04			
	20	GB05-010256	Handbook of Glass.	1986 v.	001 p. 0244					
	21	GB05-010257	Handbook of Glass.	1986 v.	001 p. 0244	1	2.188E+05			
	22	GB05-010259	Handbook of Glass.	1986 v.	001 p. 0244	1	.754E+06			
	23	GB05-010260	Handbook of Glass.	1986 v.	001 p. 0244	1	2.692E+07			

3) データ補間

- ・検索結果として、高温粘度の数値データが登録されているすべての Boro-Silicate ガラスがリストアップされます。1017件。
- ・なお、特性中分類の Viscosity(100-1000℃)(太字)を選 択することでも 700℃の粘度データを含む検索が可能 となります。この場合、100~1000℃の広い温度範囲の 検索となります。
- ・この場合には、100-1000℃の粘度の数値データが1つ以上登録されたガラスがすべてリストアップされます。
 551件。
- ・データ補間[INPOL]アイコンより開かれるデータ補間条件設定画面で、補間条件を設定します。
 本例ではデフォルト条件のままとし、[OK]ボタンをクリックします。

🔅 INTE File To	RGLAD	08: Data List of Prop felp	serty					-	o ×
4	•	138 8			2 🖳 🕐	6	INTERG	AD 8: Glass F	roperty
	~	Data Source	e List			Detail	Information	Component	
		Total Number	1017 Com	ponent Unit	nol% 👻	Delete	*, 5 *,1	Property	
		Number of Source	es 205 P	roperty Unit	common 👻	Undo	Additivity Equation	Structure	
Delete	No.	Glass No.	Data Source	Year	Data Source Number	Viscosity (dPa	at 700C		
	1	GJ02-000026	Glass Science and	1983 v. 056	p. 0125				
	2	GB04-004679	Handbook of Glass		p. 0299	1			-
	3	GB04-004680	Handbook of Glass		p. 0299	1	.692E+01		
	4	GB04-004681	Handbook of Glass		p. 0299		1.0E+01		
	5	GB04-004682	Handbook of Glass	1986 v. 001	p. 0299				
	6	GB04-004683	Handbook of Glass		p. 0299	1	.167E+03		
	7	GB04-004684	Handbook of Glass	1986 v. 001	p. 0299				
	8	GJ05-005435	J. American Ceram	1980 v. 063	p. 0126		2.0E+10		
	9	GJ05-010069	J. American Ceram		p. 0109		.973E+07		
	10	GJ05-010070	J. American Ceram		p. 0109	7	.311E+09		
	11	GB05-010245	Handbook of Glass	1986 v. 001	p. 0243				
	12	GB05-010246	Handbook of Glass		p. 0243				
	13	GB05-010247	Handbook of Glass		p. 0243				
	14	GB05-010248	Handbook of Glass	1986 v. 001	p. 0243				
	15	GB05-010249	Handbook of Glass		p. 0244	1	.622E+03		
	16	GB05-010250	Handbook of Glass		p. 0244	1	.005E+03		
	17	GB05-010253	Handbook of Glass	1986 v. 001	p. 0244	3	162E+03		
	18	GB05-010254	Handbook of Glass	1986 v. 001	p. 0244				
	19	GB05-010255	Handbook of Glass	1986 v. 001	p. 0244	1	.514E+04		
	20	GB05-010256	Handbook of Glass	1986 v. 001	p. 0244				
	21	GB05-010257	Handbook of Glass	1986 v. 001	p. 0244	2	.188E+05		
	22	GB05-010259	Handbook of Glass	1986 v. 001	p. 0244	2	.754E+06		
	23	GB05-010260	Handbook of Glass		p. 0244	1	.692E+07		

- ・内挿あるいは外挿により補間計算された 700℃のデータ が検索結果画面の表にピンク色の文字で表示されます。
- ・補間データが現われないガラスは、データが一つしかないか、補間条件のデフォルト条件である 700±200℃の範囲に補間の元となるデータが一つもないことにより、補間計算ができないガラスです。
- ・Viscosity(100-1000℃)で検索した場合には、700℃以外の温度についても補間計算がされます。
- ・補間計算した結果はファイル保存アイコンのクリックにより使用パソコンに保存できます(スタンダード版、CD フル機能版の場合に可能、インターネット版では不可)。

INTERGLAD 8 : Temperature-Property Plot : Glass No.: GJ05-010069 File Tools Help la 🛛 👔 🔞 🕼 INTERGLAD8: Plot Viscosity (Glass No.: GJ05-010069) 1.000E+10 1.000E+09 1.000E+08 dPa.s 1.000E+0 Data Interpolation: method: linear /ISCI 1.000E+06 method: linear variable y (property): log y variable x : 1/x y = 16820.38164 x + -9.3856; 1.000E+05 1.000E+04 1000.00 950.00 900.00 650.00 850.00 900.00 750.00 700.00 Temperature C x: inverse 🔻 y: logarithm 🔻 style: line & poi Close

4) 温度-特性プロット

- ・検索結果画面で一つのガラスを選択し、温度・特性プロット(右の PLOT)アイコンをクリックすると、温度・特性プロットが表示されます。
- この XY プロットでは、補間データはピンク色の点で現われます。プロット点のスタイル、軸形式も図下部のプルダウンメニューの指定により変えられます。
- ・粘度の場合、温度(X 軸)は温度℃の逆数(1/x)、粘度(Y 軸)は対数(logy)スケールがデフォルトとなっていま す。なお、デフォルト補間条件の場合、補間は温度を 絶対温度の逆数として計算します(左図)。

5. 商品検索 - FRP 用高強度ガラス繊維

FRP 用の高強度ガラス繊維の市販名とそのガラスの詳細調査を行います

<マニュアル第3章B、第4章2参照>

1) 検索条件設定(特性(詳細)検索画面) → 検索実施

・外観・特徴・製法欄で

Appearance/Shape/Linear と展開し、Fiber を選択しま す。あるいは Keyword に Fiber と入力し、選択します。

- ・用途欄で Material を展開し、Plastics, FRP を選択します。
 あるいは Keyword に FRP と入力し、選択します。
- ・出典欄で Catalogue を選択します。

2) 検索結果(特性検索結果画面)

🔯 INTE	RGLA	08: Data List of Prop	ierty								-		×
File To	ols i	lelp											
4	2	88	魚 监 닗 🖬	100 M	1 🚆 🛛 🖸	?) 🕻	1		INTERG		B: Glass	s Prop	perty
		Data Source L	ist			D	etail	Inform	nation	Com	ponent		ŕ
	\triangleleft	Total Number	18 Compone	ent Unit	mol% 💌	De	lete	+1.7		Pro	perty		
		Number of Sources	s 18 Prope	rty Unit	Common 💌	U	ndo	Additivity	Equation	Stru	icture		
Delete	No	Glass No.	Data Source	Year	Data Source Number		Young's	Modulus at.	Tensile St (MPa	rength))		
	10	GC05-052346	Nitto Boseki (J)		NITTOBOT-GLAS	s			4.0	555E+03	<hr/>		
	4	GC06-052225	Owens Corning (US) 1989	S-Glass			8.55E+01	4.	585E+03	\mathcal{I}		
	3	GC03-052224	Owens Corning (US) 1989	E-Glass	-		7.235+01	3.4	45E+03			
	6	GC03-052249	Asahi Fiber Glass (J		E-Glass			7.252E+01	3	43E+03			
	7	GC03-052250	Asahi Fiber Glass (J		ECR-Glass			7.223E+01	3	.43E+03			
	9	GC03-052344	Nitto Boseki (J)		NITTOBOE-GLAS	SS			3	43E+03			
	5	GC03-052226	American Biomateri.	1989	C-Glass			6.89E+01	3	.31E+03			
	12	GC02-052349	Nitto Boseki (J)		NITTOBOC-GLAS	38			3.0	087E+03			
	11	GC05-052348	Nitto Boseki (J)		NITTOBOD-GLAS	SS			2.3	254E+03			
	8	GC05-052262	Central Glass (J)		E-GLASSFIBER			7.252E+01	1	.96E+03			
	13	GC03-052753	PPG Industries (US)		FIBER GLASS					1.7E+03			
	2	GC03-052074	Nippon Sheet Glas		E-Glass			7.35E+01	1	.47E+03			
	14	GC03-071205	Nippon Electric Gla	1989	EF			7.252E+01	1	.47E+03			
	1	GC03-051554	Corning Inc. (US)		E-Glass			7.4E+01					
	15	GC05-071206	Nippon Electric Gla	1989	D-40								
	16	GC03-144895	Saint-Gobain (FR)	1983	02418								
	17	GC06-144896	Saint-Gobain (FR)	1983	0320180								- P
	18	GC06-144897	Saint-Gobain (FR)	1985	02509								

特性選択小画面

Select Property × Property -010000 Mechanical, Physical 0510 Density at RT 0050 Shear Modulus 0070 Bulk Modulus 0060 Poisson Rati 🔲 0540 Young's Modulus at RT 0120 Tensile Strength 0172 Mohs Hardness 0180 Vickers Hardness (Typical) 0170 Vickers Hardness (Miscell) Select All Clear All Expand Collaps. C OK CANCEL

3) 抽出ガラスの調査

- ・18件のガラスがリストアップされます。また出典欄より
 これらが10社のデータであることがわかります。
- [Property]ボタンをクリックして特性選択小画面を開き ます。
- ・特性項目より、高強度ガラス繊維として重要な引張強度 (Tensile Strength)とヤング率(Young's Modulus at RT) のチェックボックスにチェックを入れ選択し、これらの データをリストに表示します。
- ・引張強度でソートを行い、高低順に並べると、引張強度 が高いガラスがどのようなものかがわかります (NITTOBO T-Glass、S-Glass 等)。

- ・次に引張強度、ヤング率の高い S-Glass について詳しく 調べます。
- ・特性検索画面にもどり、[Reset]ボタンをクリックします。
 [Commercial(User)Glass]欄で S/ S-Glass を選択し、組 成単位を mass%として組成展開[Develop]ボタンをクリ ックした後、検索を行います。この場合、出典欄は設定 しません。
- ・本例の場合、組成展開により成分の最大値、最小値が同 じ値になりますが、これはS-Glass と
 - して登録されたガラス組成に幅がないためです。
- ・検索結果画面に9ガラス(9出典)が表示されます。組成
 展開をしないで検索すると3件のみの抽出となり、組成
 展開によりカタログデータ以外の雑誌等のデータも抽出されたことがわかります。

-	ols He	elp I Gabil A	al intel		a in the second s		1 (1980)	च क	66					R. Class B	anorty
			Data	FOR FOR FO		arst ar	10 206	111111		Detail	-	formation	Component	o: Glass Fi	operty
		1	Total Nu	imber	9	Compo	nent Unit	mass%	-	Delete		2020	Property)	
			Number	of Sources	9 /	Prop	perty Unit	Common	-	Undo	Addi	tivity Equation	Structure		
Delete	No.	GI	ass No.	Data So	ource	Year	Dat	a Source lumber	SiO2	AI203	MgO	Density at RT	(GPa)	Tensile Strengt	h Expan:
	1	GB06	-001791	Handbook o	f Glass	1986	v. 001 p	0093	65.00	25.00	10.00	2.5			
	2	GJ03-	032345	Glass Physi	cs & C	1980	v. 006 p	0444	65.00	25.00	10.00	2.5			
	3	GC06	-051555	Corning Inc.	(US)		S-Glass		65.00	25.00	10.00				
	4	GC06	-052225	Owens Corr	ning (US)	1989	S-Glass		65.00	25.00	10.00	2.46	8.55E+01	4.585E+0	3
	5	G805-	-164715	Fundamenta	als of In	1994	v. 001 p	0003	65.00	25.00	10.00				
	6	GJ06-	172039	J. Non-Cryst	talline S	1997	v. 209 p	0059	65.00	25.00	10.00				
	7	GB06-	174772	Data Book o	f Glass	1991	v. 001 p	0134	65.00	25.00	10.00	2.49	8.624E+01	4.606E+0	3
	8	GP06	205434	Japanese P	atent	2000	A233942		65.00	25.00	10.00				
	9	GP06	-300017	European Pa	atent	2010	A222133	15	65.00	25.00	10.00			-	T

4) 周辺ガラスの調査

File To	s H	* 58 8 (P				1 ? 6	6				INTERGLAD	: Glass Prop	erty
		Data	Source List				Detail		Inform	nation	Component		1
	1	Total Nur	nber 40	Component U	Jnit m	ass% 👻	Delete	1	+, -	×./	Property	5	
		Number	of Sources 26	Property L	Jnit C	mmon 👻	Undo		Additivity	Equatio	a Structure	Γ	
Delete	No.	Glass No.	Data	Source	Year	Data So Numb	urce s	3102	AI203	MgG	Young's Modulus at	Tensile Strength	П
	22	GJ06-073521	Glass Physics	& Chemistry	1982	v. 008 p. 002	6	64.98	26.58	8.44	9.2E+01	, = 47	
	21	GJ06-073520	Glass Physics	& Chemistry	1982	v. uua p. uua		05.09	24.30	9.61	9.1E+01		1
	30	GB06-174772	Data Book of G	lass Compositio	1991	v. 001 p. 013	14	65.00	25.00	10.00	8.624E+01	4.606E+03	ŝ.
	23	GB06-089932	Glass Hand Bo	ook (J)	1975	v. 001 p. 021	9	64.36	24.82	10.31	8.575E+01		
	18	GC06-052225	Owens Cornin	g (US)	1989	S-Glass		65.00	25.00	10.00	8.55E+01	4.585E+03	ŝ
	1	GB06-001787	Handbook of G	lass Properties	1986	v. 001 p. 005	3	63.00	25.00	12.00			11
	2	GB06-001790	Handbook of G	lass Properties	1986	v. 001 p. 005	13	65.30	23.30	10.40			1
	3	G806-001791	Handbook of G	lass Properties	1986	v. 001 p. 005	3	65.00	25.00	10,00			1
	4	GB06-001792	Handbook of G	lass Properties	1986	v. 001 p. 009	3	65.50	25.00	9,50			1
	5	GB03-003813	Handbook of G	lass Properties	1986	v. 001 p. 036	1.	65.76	24.61	9.63			П
	6	GB06-008065	Handbook of G	lass Properties	1986	v. 001 p. 049	15	65.08	26.82	8.11			
	7	GB06-012598	Handbook of G	lass Properties	1986	v. 001 p. 059	13	66.50	23.50	10.00			
	8	GB06-012605	Handbook of G	lass Properties	1986	v. 001 p. 059	13	64.00	26.00	10.00			
	9	GJ06-021945	J. Non-Crystall	ine Solids	1987	v. 093 p. 020	13	63.19	23.38	8.85			
	10	GB03-022360	Handbook of G	lass Data	1987	v. 00C p. 074	10	64.66	24.42	10.91			1

同一出典画面

💋 IN	TERGLAD 8 : Glasses	from a D	ata Source	2			-	
File 1	Fools Help							
8	😫 🚑 📝 🕻	ð 😺				INTER	GLAD 8: Da	ta Source
C	ata Source :	GI	ass Phys	ics & Ch	emistry	Numb	er of Data : 5	
C	ata Source Numb	er: Vo	ol. 008 Pa	age 0026	i (1982)	Comp	onent Unit mas	s% 💌
A	wthor :	As Go Fe	slanova N orbachev ertikov V.I	I.S., Dora V.V., By:	thiev D.B., Sapozhkova strikov A.S., Petrakov	a L.A., V.N., Prope	rty Unit SI	•
N	lemo :						Detail	
	Glass No.	SiO2	AI2O3	MgO	Vickers Hardness ((Pa)	Density at RT (kg/m3)	Young's Modulu (Pa)	Refractive Index
1	GJ06-073518	69.50	16.92	13.58		2.51E+03	9.3E+10	
2	GJ06-073519	68.11	19.90	11.99	6.174E+09	2.492E+03	9.1E+10	
3	GJ06-073520	66.09	24.30	9.61	5.88E+09	2.485E+03	9.1E+10	
4	GJ06-073521	64.98	26.58	8.44	6.174E+09	2.495E+03	9.2E+10	
5	GJ06-073522	63.58	29.56	6.85	6.37E+09	2.5E+03	9.4E+10	
	4				III.			•
					Close			

- この画面で[Property]ボタンより特性選択小画面を開き、
 [Select All]ボタンをクリックして[OK]ボタンをクリックすることにより、登録されているすべての特性データを表示することができます。
- ・さらに S-Glass の周辺のガラスに関する情報を集めま す。
- ・特性検索画面で S-Glass 組成成分のそれぞれ±2%の数 値を最小値、最大値に設定します。
- ・[Commercial(User)Glass]欄の S-Glass を消去します。
- ・出典欄を NOT Patent とします。

- ・40 ガラス(26 出典)のデータが抽出されます。なお、 出典に特許も含め、条件をつけない場合には 119 ガラス (57 出典)となります。
- ・特性検索結果画面の[Property]ボタンより引張強度 (Tensile Strength)とヤング率(Young's Modulus at RT)を表示し、ヤング率の値を高低順となるようソート します。これにより、S-Glassの周辺組成での機械的特 性を知ることができます。
- ・また、最もヤング率の高い GJ06-073521 ガラスの同一 出典画面を表示し(該当ガラスの行をクリックした上で 同一出典アイコンのクリックにより)、このガラスの出 典に記載されているすべてのデータ(この場合、5ガラ ス)を確認することができます。

特性予測(特性計算式)

6. 特定組成のガラスの特性予測 - ホウケイ酸塩ガラス

ホウケイ酸塩ガラス(SiO2 40 mass%, B2O3 30%, Al2O3 10%, Na2O 10%, BaO 10%)の密度、熱膨張係数、 熱伝導率、屈折率を予測します

1) 密度の予測(特性計算式による特性予測画面)

2) 熱膨張係数の予測

<マニュアル第3章 D.1、第4章 4.1、第6章1参照>

- Main 画面より [Property Prediction]ボタン、[Additivity Equation for Property Prediction]ボタンをクリックし て特性計算式による特性予測検索画面を開きます。
- ・ 画 面 右 の 特性 計算式 選択 欄 で Density を 展開し、 Appen(Silicate)を 選択します。
- ・左中段の Condition of Equation に、指定した計算式の 条件が現われるため、予測したい組成成分をすべて含む かどうかを確認します。
- ・[Composition]欄に必要成分を選択表示し、その数値を入 力します。成分名は[Ctrl]キーを押したまま成分をクリ ックすることにより、同時に複数の選択ができます。単 位は mass%とします。
- [Calculate]ボタンをクリックすると[Predictive Value] 欄に予測値 2.458 g/cm³が現われます。
- ・同組成の他特性を予測する場合、組成欄はそのままとし、
 特性予測式のみを変えて計算することにより、次々に特
 性予測ができます。
- ・特性予測式欄の Linear Expansion Coefficient を展開し、
 Appen(Silicate)を選択します。
- ・[Calculate]ボタンをクリックすると7[Predictive Value] 欄に予測値 68.62×10⁻⁷/Kが現われます。

3) 熱伝導率の予測

4) 屈折率の予測

- ・特性予測式欄の Thermal Conductivity を展開し、 Ammer(Silicate and Borate)を選択します。
- [Calculate]ボタンをクリックすると[Predictive Value] 欄に予測値 0.8968 W/(mK) (30℃)が現われます。
- ・本例の場合、Ratcliffe(Silicate)、Russ(Silicate)の式でも
 計算でき、それぞれ、

0.8349 W/(mK) (0℃)、0.9256 W/(mK) (0℃)の予測値が 得られ、予測計算式による値を比較することができます。

- ・特性予測式欄の Refractive Index を展開し、 Appen(Silicate)を選択します。
- Calculate ボタンをクリックすると[Predictive Value] 欄に予測値 1.508 が現われます。
- ・上記のように組成を決めれば、色々な特性について予測 値を計算することができますが、式により組成等の制限 があり、計算ができない場合も多々あります。

(第6章1.特性計算式参照)

7. 特性についての予測式の導出 - 亜鉛ケイ酸塩ガラスの密度 亜鉛ケイ酸塩ガラスの密度(室温)についての予測式(加成式)を導出します

<マニュアル第3章D.2、第4章4.2-4.5参照>

1) 重回帰分析のための検索条件設定(重回帰分析検索画面)→ 検索実施

- ・ Main 画面より [Property Prediction] ボタン、 [Multiple Regression Analysis]ボタンをクリックして重回帰分析 検索画面を開きます。
- ・状態(State)はデフォルトのGlassのままとします。
- ・ガラス系として Zinc-Silicate、特性として Density at RT を選択し、出典は特許以外 (NOT Patent) とします。
- 2) 検索結果(重回帰分析検索結果画面)→ 説明変数成分項選択(成分項選択小画面)

🙋 INTE	RGLAD	3 : Data List for Reg	ression Analysis					- 0	×	
File To	ols He	lp								
4	i 🖌	🗟 🗃 🚕 ;			in i	INTERGL	AD 8: Regress	sion Analy	sis	3
									•	•
	-					Detall				
	Tot	al Number	535 Compone	nt Unit	mol% 💌 In	formation +,	-,*,/			J
			447) Damas		Common -	Com	nonont Analy			
	Nu	Tiber of sources	147 Proper	ty Unit	common	Con	ponent Analy.	2e		
Delete	No	Glass No	Data Source	Year	Data Source	Density at RT	Density at RT	Density at		-
					Number	(g/cm3)	(Predictive Value)	(Residua		
	1	GB02-000500	Handbook of Glass	1986	v. 001 p. 0065	2.74			1	
	2	GB02-000501	Handbook of Glass	1986	v. 001 p. 0065	2.867				
	3	GB02-000502	Handbook of Glass	1986	v. 001 p. 0065	2.99				1
	4	GB02-000503	Handbook of Glass	1986	v. 001 p. 0065	3.115				
	5	GB02-000504	Handbook of Glass	1986	v. 001 p. 0065	2.405				
	6	GB02-000505	Handbook of Glass	1986	v. 001 p. 0065	2.51				
	7	GB02-000506	Handbook of Glass	1986	v. 001 p. 0065	2.636				
	8	GB02-000507	Handbook of Glass	1986	v. 001 p. 0065	2.885				1
	9	GB02-000508	Handbook of Glass	1986	v. 001 p. 0065	2.439			,	Ŧ

🙋 Select Component Terms

 ⊮
 SIO2

 ⊮
 B203

 ⊮
 Al203

 ⊮
 Mg0

 ∠
 Ca0

 №
 Ba0

 №
 L20

 №
 Na20

 №
 Na20

 №
 R203

 №
 Na20

 №
 Na20

Min. num. of glass Min. num. of glasse Select All Com

Selectiion of 1-Component Terms

ponent I

If necessary, change the following condition : Apply

- 535件(147出典)のガラスが抽出されます。
- ・[Component]ボタンより説明変数成分項選択 小画面を開き、重回帰式に使用する成分項を選択します。
- ・本例では最初に現われる1成分項選択小画面においてデ フォルト条件のままとし、[OK]ボタンをクリックします。 これにより説明変数成分項は1成分項までとなります。 現われる[Question]ダイアログで成分項数を確認し、 [OK]ボタンをクリックします。

es = 1 % of es = 2 glas ponent Clear	total retrived glass sees to one compor All Component	ses ient	
			QUESTION
lumber of Glasses	Max. Content %		Selection of Explanatory Variables in Multiple
470	50 000		1-Component Terms: 31
207	25.000		2-Component Terms: 0
30	30.000	=	3-Component Terms: 0
123	38.200		OK Cancel
73	30.000		
33	35.000		
177	40.000		
142	35.000		
5	45.000		
1	0.540		
2	1.790		
5	3.140		
	70.000		

30.000

40.000 40.000 0.000

28

BACK Next OK Cancel

×

1 成分項数:31

🔯 INTE	RGLAD	8 : Data List for Reg	pression	Analysis								- 1		×
File To	ols H	lelp												
4	2	I 🗟 🖨 🛔				K K 2	🗑 🔕 II	TER	GLAD	8: Re	gress	ion A	naly	sis
								_			-			
	_						Detail							
	Т	otal Number	535	Compone	nt Unit	mol% 👻	Information		*,-,*	,1	_	_		
	N	umber of Sources	147	Proper	ty Unit	Common 👻			Compon	ent 🤇	Analyz	te		
Delete	No.	Glass No.	D	ata Source	Year	Data Source Number	SiO2	B2O3	AI2O3	MgO	CaO	BaO	Li20	-
	1	GB02-000500	Handb	ook of Glass	1986	v. 001 p. 0065	65.00						15.	
	2	GB02-000501	Handb	ook of Glass	1986	v. 001 p. 0065	60.00						15.	
	3	GB02-000502	Handb	ook of Glass	1986	v. 001 p. 0065	55.00						15.	
	4	GB02-000503	Handb	ook of Glass	1986	v. 001 p. 0065	50.00						15.	
	5	GB02-000504	Handb	ook of Glass	1986	v. 001 p. 0065	75.00						20.	
	6	GB02-000505	Handb	ook of Glass	1986	v. 001 p. 0065	70.00						20.	
	7	GB02-000506	Handb	ook of Glass	1986	v. 001 p. 0065	65.00						20.	
	8	GB02-000507	Handb	ook of Glass	1986	v. 001 p. 0065	55.00						20.	
	9	GB02-000508	Handb	ook of Glass	1986	v. 001 p. 0065	70.00						25.	-

3) 重回帰分析実施(重回帰分析実行画面)

🔯 inte	RGLAD 8 : Execution of Reg	ression Analysis						×
File T	ools Help							
S 6	§ 🗵 🝸 🔞 🔞				INTERGLA	0 8: Regres	sion Analy	rsis
Proper	ty			~				
	0510 Density at RT (0	Common)			Execute	ity Result		
Analys	is Condition		Select Con	nponents				
Analysi	sMethod: ○ y=Σa _i x _i +k		Select A	II Component	Clear All Compo	onent	Apply	
	o y=Σa,x,+a	x Σx 2 99 🗸	% 🗹 Exclud	e component ter	ms less than 3	data		
variable	ey: ●y ○ 1/y	log y	Exclud	e 2-&3- 💌 con	nponent terms und	ler t = 0.0 💌		
Select	Component	Coefficient	Std. Error	t Value	Component vs Property	Number	Component vs Property Correlation	
	0.00				Contelation		Plot	
M	8102				-0.37983	470	Figure	- 1
	B203				0.32153	207	Figure	- 1
	MaQ				-0.05656	30	Figure	
2	CaO				-0.07754	123	Figure	
~	BaO				0.18052	73	Figure	
V	Li20				-0.09843	33	Figure	
~	Na2O				-0.27175	177	Figure	
V	к20				-0.20754	142	Figure	
×	MnO				0.05356	5	Figure	
×	CuO				-0.07595	5	Figure	
×	ZnO				0.41719	475	Figure	
2	SrO				0.11720	28	Figure	
×	РЬО				0.49581	25	Figure	
~	Fe2O3				-0.04727	25	Figure	
	As203				-0.00182	43	Figure	
~	Y2O3				0.16244	23	Figure	-

 [Analyze]ボタンをクリックし、重回帰分析実行画面へ移 行します。

- ・[Execute]ボタンをクリックし、重回帰分析を実行します。
- [Question]ダイアログ「組成が同じガラスデータが複数 あるため、重回帰分析ができません。最後のガラスデー タを分析対象とし、その他のガラスデータは分析対象外 としてよろしいですか」が現われるため、[OK]ボタンを クリックします。
- ・次に[Question]ダイアログ「選択した組成の値が全て同じであるガラスデータが複数あるため、重回帰分析ができません。以下、同上」が現われるため、[OK]ボタンをクリックします。

🏷 INTE	RGLAD 8 : Execution of Reg	ression Analysis					- 0	×
File To	pols Help							
S) 6	ð 🗵 🕐 👩 🕼				INTERGLA	0 8: Regres	sion Analy	sis
Proper	ty							
	0510 Density at RT (Common)			Execute Vel	Thy Result		
Analys	is Condition		Select Com	ponents				
Analysi	sMethod: ○ y=Σa _i x _i +l	¢.	Select Al	Component	onent	Apply		
	(e) y=Σa,x,+a	a,x,Σx,≥99 🚽 %	Exclude	component terr	ns less than 3	data		
variable	ey: ●y ◯ 1/y	O log y	Exclude	2-&3- 💌 com	ponent terms und	ler t = 0.0 💌		
Select	Component	Coefficient	Std. Error	t Value	Component vs Property Correlation	Number of Data	Component vs Property Correlation Plot	
2	SiO2	2.26435E00	0.032	70.848	-0.37983	438	Figure	
×.	B2O3	2.58839E00	0.089	29.204	0.32153	148	Figure	
V	AI2O3	2.66068E00	0.161	16.519	0.03013	190	Figure	
×	MgO	3.29622E00	0.275	11.989	-0.05656	25	Figure	
2	CaO	3.11707E00	0.145	21.545	-0.07754	109	Figure	
2	BaO	6.79839E00	0.150	45.335	0.18052	66	Figure	
~	Li2O	2.43577E00	0.133	18.249	0.09843	33	Figure	
v	Na2O	2.87075E00	0.116	24.774	0.27175	170	Figure	
×	к20	2.60036E00	0.114	22.876	0.20754	137	Figure	
1	MnO	4.81958E00	0.186	25.851	0.05356	5	Figure	
2	CuO	5.27396E00	2.939	1.794	-0.07595	5	Figure	
2	ZnO	4.66743E00	0.044	105.598	0.41719	443	Figure	
2	SrO	5.53116E00	0.229	24.131	0.11720	26	Figure	
×	PbO	9.25409E00	0.272	34.037	0.49581	25	Figure	
2	Fe2O3	3.40323E00	1.418	2.400	-0.04727	20	Figure	
2	As203	-1.06933E01	13.152	-0.013	-0.00182	43	Figure	
2	Y2O3	8.32568500	0.237	35.198	0.16244	23	Figure	

- ・重回帰分析実行画面に計算結果が表示されることを確 認します。
- [Verify Result]ボタンをクリックして重回帰分析検証画
 面に移行します。

4) 重回帰分析結果の検証(重回帰分析検証画面)

・寄与率 R²が 0.9613 と高く、実測値(収録値)と予測値のプロットで y=x の直線よりのばらつきが小さいことを確認します。(R²を 0.8以上とすることを推奨します)

5) t 値検定 再計算

🍅 int	ERGLAD	3 : Execution of Reg	ression Analysis					- 🗆	×
File 1	fools H	elp							
S (3 🗵	? 😺 😥			I	NTERGLAD	8: Regres	sion Analy	sis
Prope	rty 051) Donsity at PT ((`ommon)		E	xecute Ver	ify Result		
Anaba	nie Cond	ition	.ommon y						
Analys	sis conu	. ⊖ v=Σavt+k		Select Comp	onents				
Analys	sis metho			Select All (Component	Clear All Compo	nent	Apply	
		⊚ y=Σa _i x _i +a	xxx Σx; 2 99 ▼ %	6 🗹 Exclude o	component term	is less than 3	data		
variab	le y:	🖲 y 🔾 1/y	🔾 log y	Exclude	2-&3- 🔻 com	ponent terms und	er t = 0.0 💌		
				_	/	Component	Number	Component	
Selec		Component	Coefficient	Std. Error	tValue	vs Property		vs Property Correlation	
				/	1	Correlation	of Data	Plot	
	MnO		4.81749E00	0.187	25.771	0.05356	5	Figure	
	CuO					-0.07595	5	Figure	
	ZnO		4.66827E00	0.04	106.259	0.41719	443	Figure	
~	SrO		5.52833E00	0.230	24.069	0.11720	26	Figure	
2	PbO		9.22885E00	0.273	33.748	0.49581	25	Figure	
¥	Fe2O3		3.47512E00	1.422	2.443	-0.04727	20	Figure	
	As203					-0.00182	43	Figure	
1	Y2O3		8.31545E00	0.237	35.092	0.16244	23	Figure	
	Sb2O3					-0.04634	20	Figure	
×	La203		1.13702E01	0.351	32.420	0.23396	17	Figure	-
K	Bi2O3		1.74739E01	0.588	29.710	0.28640	7	Figure	
¥	TiO2		4.74106E00	0.33	14.335	-0.02339	54	Figure	
×	GeO2		3.56507E00	0.103	34.778	0.04774	13	Figure	
	ZrO2		6.26550E00	0.583	10.745	-0.05324	27	Figure	
	TeO2		3.56801E00	0.102	35.10	0.15568	5	Figure	
	P205		1.88816E00	0.145	13.034	-0.06330	8	Figure	
	Nb205		7.31627E00	0.774	9.655	0.18251	21	Figure	-

- ・重回帰実行画面に戻ってリストの t 値(絶対値)に低いもの(2未満等)があるかどうかを調べます。
- 本例では CuO、As2O3、Sb2O3、Ho2O3のt値の絶対値が2未満となっています。まず1未満のAs2O3、Sb2O3、Ho2O3の[Select]チェックをはずし、[Execute] ボタンをクリックし、再計算を行います。次に2未満のCuOのチェックをはずし、もう一度再計算を行います。これらの操作により2未満のt値(絶対値)を持つ説明変数成分項が重回帰式より除外されます。

 ・再度、[Execute] ボタンをクリックして重回帰分析の検 証を行います。

R²がわずかに下がりましたが、依然 0.9608 と高いことを確認します。

6) 予測式(重回帰式)完成

重回帰分析検証画面および重回帰分析実行画面に式および各成分項の係数が表示されます。 得られた重回帰式:

Density at RT (g/cm³) = 2.266×(SiO₂) + 2.587×(B₂O₃) + 2.666×(Al₂O₃) +……… 各成分:モル比率 (その他以外、27成分) ・重回帰分析検索結果画面でファイル保存アイコンにより分析結果(重回帰式を含め)を保存します。本保存は スタンダード版、CDフル機能版の場合に可能です。インターネット版ではできません。

8. 特性予測 - 亜鉛ケイ酸塩ガラスの密度

SiO₂60 mol%、Li₂O 20 mol%、ZnO 20 mol%のガラスの密度(室温)を予測します

<マニュアル第3章D.2、第4章4.6参照> 利用します

亜鉛ケイ酸塩系組成であるため、7.で導出した重回帰式を利用します。

1) 重回帰分析検索結果画面から特性予測画面を開く

File To	els H	elp S 🖶 🚑				K K	?	Detail		BLAD	8: Re	gress	ion A	naly	/s	s
	Т	tal Number	535	Com	ponent Unit	mol%	-	Information		*,-,*,	1					
	Nu	imber of Sources	147	Pr	operty Unit	Common	-			Compone	ent	Analyz	e			
Delete	No.	Glass No.	ensity (g/cm	at RT (3)	Density (Predictive	at RT e Value)	Der (R	nsity at RT (esidual)	SiO2	B2O3	AI2O3	MgO	CaO	Ba		
	1	GB02-000500		2.74		2.771		-3.116E-02	65.00						-	
	2	GB02-000501		2.867		2.891		-2.43E-02	60.00						F	
	3	GB02-000502		2.99		3.011		-2.143E-02	55.00							
	- 4	GB02-000503		3.115		3.132		-1.657E-02	50.00							
	5	GB02-000504		2.405		2.419		-1.411E-02	75.00							
	6	GB02-000505		2.51		2.539		-2.925E-02	70.00							
	7	GB02-000506		2.636		2.659		-2.338E-02	65.00							
	8	GB02-000507		2.885		2.9		-1.465E-02	55.00							
	9	GB02-000508		2.439		2.427		1.153E-02	70.00							
	10	GB02-000509		2.55		2.548		2.397E-03	65.00							
	11	GB02-000510		2.66		2.768		-1.083E-01	50.00							•
		QUES	TION	ielect g	lass for	compo	sition	modeling;			×					

2) 特性予測画面で組成を入力し予測値を計算

OK Cancel

🤣 INTERGLAD I	8 : Property Prediction	n						-		×
File Help										
🗟 🖨 [) 🔞 🔞					INTER	RGLAD8: Pro	perty	Predic	tion
Regression Ec	quation									
		Coefficient					Content (mol%)			
Component	Density at RT					Initial	New			
SiO2	2.266E00						60.000			
B2O3	2.587E00						0.000			
AI2O3	2.666E00						0.000	Glass	Forming R	eaion
MgO	3.291E00						0.000			-
CaO	3.100E00						0.000			
BaO	6.802E00						0.000			
Li2O	2.433E00						20.000			
Na2O	2.878E00						0.000			
K20	2.603E00						0.000	6		
MnO	4.817E00						0.000		Calculate	
000							0.000	Clear	New Con	tent
					Total	0.000	100.000 %		Reset	1
Property									nooot	
	Specified		U	nit	Predictive V	alue				
Density	at RT			g/cm3		2.780				
•				-	\sim					
•										1
-									Close	

- ・3.1 の重回帰式が保存してある場合、任意の重回帰分析 検索結果画面を開き、[Open] アイコンより、保存した 検索結果画面を開きます。
- ・特性予測[PROP]アイコンをクリックすると、「モデル組成を選択してください。…」との[Question]ダイアログが現われます。[OK]ボタンをクリックすると特性予測画面が開きます。この画面の表でいずれかのガラスが選択された場合には{行のクリックによりその行がアクティブ(水色)となる}、[Question]ダイアログは現われず特性予測画面が開きます。
- Content の New 欄に特性予測する組成成分値をインプ ットし、[Calculate] ボタンをクリックすると、特性値 が計算されます。
- ·密度予測結果: 2.780 g/cm³
- ・なお、重回帰分析検索結果画面でいずれかのガラスが選 択された場合には、[Initial] 欄および [New] 欄にその ガラスの組成が表示されます。[New] 欄を予測する組 成に書き換えて計算します。

9. 組成最適化 - 特定密度の亜鉛ケイ酸塩ガラス

亜鉛ケイ酸塩ガラスで密度(室温)が2.6g/cm³となる組成を設計します

SiO₂、Al₂O₃、CaO、Na₂O、K₂O、ZnOの6成分からなる組成とした場合

<マニュアル第3章 D.3、第4章 4.7参照>

8.と同様に亜鉛ケイ酸塩系組成であるため、7.で導出した重回帰式を利用します。

1) 重回帰分析検索結果画面から組成最適化画面を開く

2) 組成最適化画面での組成設計(最適化)試行

- ・重回帰分析検索結果画面を開き、[Open]アイコンより、 保存した 3.1 結果(検索結果画面)を開きます。
- ・左図の例では、目標組成の6成分欄および特性値欄(文 献値、予測値、その差)を左にドラックし、見易くして います。
- ・まず検索結果リストからモデル組成を選択します。モデル組成は目標成分を含み、特性値が目標値に近いものとします。本例の場合には、目標6成分を含み、密度2.83 g/cm³の No.503 (GJ07-381993)をモデル例としてクリックし、アクティブ(水色背景)とします。
- ・組成最適化[COMP]アイコンをクリックすると、組成 最適化画面が開きます。
- ・組成最適化画面では、Regression Equationの
 Content (Initial と New)欄にモデル組成の成分値が表示されます。
- ・密度目標値2.6を Propertyの[Target]欄に インプットし、[Calculate]ボタンをクリック すると、[Predictive Value]欄にモデル組成の計算値が 現われます。また、画面の下部のグラフに、選択したモ デル組成の密度と目標値との違い(%)が赤色点で現わ れます。グラフ右の Vertical Scale の指標を左にドラッ グし(左端の1%まで可能)、グラフの赤色点と目標値の 差を拡大して確認し易くします
- ・次に Content の [New] 欄を高低にソートし、目標 6成 分に含まれない B2O3、MgO、BaO、Fe2O3の値を0に 修正します。

- ・[Calculate] ボタンをクリックすると [New] 欄に記載 した組成(100%に按分)の特性値が計算され、 [Predictive Value] 欄に表示されます。また、グラフに も新たな赤色点が表れ、目標値との差を確認できます。
 ・次に Contentの [New] 欄の値を修正し、再計算します。 この操作を繰り返し、特性値を目標値に近づけていきま す。赤色点が目標値から逆に離れる場合には、[Erase] ボタンを押し、赤色点と New 組成を元に戻します。成 分値の修正は、重回帰係数(Coefficient)の絶対値が大き い成分ほど、特性値の増減が比例して大きくなることを 考慮しながら行います。本例の場合には6成分の中で重 回帰係数の大きい ZnOを少しずつ減らしていきます。
- ・最終的に本例では、下記の組成で Density at RT が 2.600 g/cm³となります。

SiO₂ 67.49 mol%, Al₂O₃ 1.57%, CaO 11.84%, Na₂O 11.77%, K₂O 0.93%, ZnO 6.41%。

・なお、目標特性となる組成は一つではないため、ZnOの みでなく他の成分も変えて試行し、最適化します。

10. 組成最適化(自動計算) - 特定密度の亜鉛ケイ酸塩ガラス

9.と同じ課題で、亜鉛ケイ酸塩ガラスで密度(室温)が2.6 g/cm³となる組成を自動計算により設計します SiO₂、Al₂O₃、CaO、Na₂O、K₂O、ZnOの6成分からなる組成とした場合

<マニュアル第3章 D.4、第4章 4.8、4.9参照>

Ver. 8 より使用可能となった最小二乗法(LSM: Least Squares Method)を用いた自動計算により組成最適 化を行います。7.で行った重回帰分析検索結果を利用し、新しい重回帰式を作って計算します。

1) 重回帰分析検索結果(重回帰検索結果画面)

🔅 INTE	RGLAD	8 : Data List for Reg	ression A	nalysis					- • ×
File To	ols H	elp							
4	2	🗟 🖨 🚕 ;	쐶닗	2 🔛 🖁	킕띒		INTERGL	AD 8: Regress	sion Analys
							Detail		
	1	otal Number	535	Compon	ient Un	it mol% 👻 🗌	Information +	·,-,*, <i>l</i>	
		lumber of Source	s 147	Prop	erty Un	it Common 👻	Co	mponent Anal	lyze
Delete	No.	Glass No.	Dat	a Source	Year	Data Source Number	Density at RT (g/cm3)	Density at RT (Predictive Value)	Density at RT (Residual)
	501	GJ03-381758	J. Ameri	can Cerami	. 2015	v. 098 p. 0748	2.481		
	502	GJ03-381992	J. Mater.	Sci.: Materi	2017	v. 028 p. 4064	2.57		
	503	GJ07-381993	J. Mater.	Sci.: Materi	2017	v. 028 p. 4064	2.63		
	504	GJ07-381994	J. Mater.	Sci.: Materi	2017	v. 028 p. 4064	2.69		
	505	GJ07-381995	J. Mater.	Sci.: Materi	2017	v. 028 p. 4064	2.75		
	506	GJ07-381996	J. Mater.	Sci.: Materi	2017	v. 028 p. 4064	2.84		
	507	GJ07-382492	J. Materi	als Science	2018	v. 053 p. 011204	3.835		
	508	GJ07-382493	J. Materi	als Science	2018	v. 053 p. 011204	3.845		
	509	GJ07-382494	J. Materi	als Science	2018	v. 053 p. 011204	3.839		
	510	GJ07-382495	J. Materi	als Science	2018	v. 053 p. 011204	3.835		
	511	GJ07-382496	J. Materi	als Science	2018	v. 053 p. 011204	3.832		
	512	GJ02-382603	Ceramic	s - Silikaty	2018	v. 062 p. 0188	2.854		
	513	GJ07-382604	Ceramic	s - Silikaty	2018	v. 062 p. 0188	3.007		
	514	GJ07-382605	Ceramic	s - Silikaty	2018	v. 062 p. 0188	3.051		
	515	GJ06-383138	J. Non-C	rystalline S	2018	v. 502 p. 0190	2.73		
	516	GJ07-383155	J. Non-C	rystalline S	2018	v. 502 p. 0190	2.68		
	517	GJ07-383156	J. Non-C	rystalline S	2018	v. 502 p. 0190	2.84		
	518	GJ07-383157	J. Non-C	rystalline S	. 2018	v. 502 p. 0190	3.24		
	519	GJ07-383158	J. Non-C	rystalline S	2018	v. 502 p. 0190	3.42		
_		0.007.000.000	41		0040	COO 0400			

説明変数成分項選択(成分項選択小画面)

- ・[Component]ボタンより説明変数成分項選択 小画面を開き、目標とする 6 成分のみを重回帰式に 使用する成分項として選択します。
- ・この選択は、まず説明変数成分項選択小画面で[Clear All Component]ボタンをクリックし、その後、SiO2、Al2O3、CaO、Na2O、K2O、ZnO の6成分のチェックボックスのみに↓を入れ直します。[OK]ボタンをクリックし、現れる[Question]ダイアログで1成分項のみが6となっていることを確認します。

🤣 Select Componei	nt Terms		×	
Selectiion of 1	-Component Terms			
If necessar	y, change the following cor	dition : Apply		
Min. num.	of glasses = 1 % o	f total retrived glasses		
Min num	f glasses = 2 glas	ses to one componen		
	yiusses 2 gius	saca to one componer		
Select	All Component Clear	All Component		
Compon	ent Number of Glasses	Max. Content %		
SiO2	470	85.000	-	
B2O3	173	50.000		
AJ2O3	207	25.000		
MgO	30	30.000		
🖌 CaO	123	38.200		
BaO	73	30.000	-	
Li20	33	35.000		
Ma2O	177	40.000		
🖌 K2O	142	35.000		
MnO	5	45.000		
FeO	1	0.540		
C00	2	1.790		
CuO	5	3.140		
ZnO	475	70.000		QUESTION
SrO	28	30.000		Selection of Explanatory Variables in Multiple Regression Analysis
CdO	1	40.000		1-Component Terms: 6
Pb0	25	40.000		2-Component Terms: 0
		0.000		

2) 重回帰分析実施(重回帰分析実行画面)

🍅 INTE	RGLAD 8 : Execution of Reg	ression Analysis				_	· 🗆	X				
File T	ools Help											
S) 6	3 🗵 📝 👩 😒			IN	TERGLAD	8: Regressi	on Ana	lysis				
Proper	ty 0510 Density at RT (C	Common)		Ð	kecute Veri	fy Result						
Analys	is Condition		Select Com	Select Components								
Analys	is Method: ○ y=Σa _i x _i +k		Select A	I Component	Clear All Comp	onent	Apply					
	e y=Σa,x,+a	x Σx 2 99 👻	% 🗹 Exclude	e component terr	ns less than 3	data						
variabl	ey: 🖲 y 🔾 1/y	🔾 log y	✓ Exclude	e 2-&3- 🔻 com	ponent terms und	ier t = 0.0 🔻						
Select	Component	Coefficient	Std. Error	t Value	Component vs Property	Number	Compo vs Pro Correl	perty lation				
					Correlation	of Data	PI	ot				
r	SiO2	2.27863E00	0.034	66.480	-0.37983	439	Figu	re				
r	AI2O3	2.88409E00	0.158	18.284	0.03013	190	Figu	re				
r	CaO	3.37441E00	0.167	20.253	-0.07754	109	Figu	re				
r	Na2O	2.85652E00	0.106	27.034	-0.27175	170	Figu	re				
r	К20	2.55682E00	0.098	26.132	-0.20754	137	Figu	re				
V	ZnO	4.69083E00	0.061	77.060	0.41719	444	Figu	re				
	Xx	7.97694E00	4.970	1.605			Figu	re				

・[Execute]ボタンをクリックし、重回帰分析を実行します。
 現れる[Question]ダイアログで[OK]ボタンをクリックします。

・計算が終わり重回帰分析実行画面の重回帰係数欄に数 値が表示された後、[Verify Result]ボタンをクリックし、 重回帰分析検証画面を開き、R²値を確認します。本例で は 0.9091 が得られ、t 値も 18.3 以上であるため、これ で重回帰式の完成です。

🏷 INTE	RGLAD	8 : Data List for Reg	res	sio	n A	nalysis								-	0	×
File To	ols H	elp	~	t.	/1	1			n tan Ir	-	<u> </u>					
+			101	F	.ə	2 %	월 동물 문	1) is		2 6	U IN	TERGLAD	8: Regres	sion	Analy	sis
								_			Detail					
	G	Fotal Number	Т	61	16	Con	nonont	Unit m	186	-	formatio		* /			
		rotal Humber	÷			Con	iponent	onne mi			Iomado		,		1	
	1	Number of Sources	5	14	17	P	Property	Unit Co	ommon	1		Comp	onent Ana	yze		
Delete	No.	Glass No.				SiO2	AI2O3	CaO	Na2O	К20	ZnO	Density at RT (g/cm3)	Density at RT (Predictive Value)	Der (R	isity at RT esidual)	
	10	GB02-000509				65.00					10.00	2.55				1
	11	GB02-000510				50.00					18.75	2.66				
	12	GB02-000511				65.00					5.00	2.47				
	13	GB02-000512				60.00					10.00	2.574				
	14	GB02-000513				55.00					15.00	2.675				
	15	GB02-000514				60.00					5.00	2.49				
	16	GB02-000515				55.00					10.00	2.597				
	17	GB02-000516				50.00					15.00	2.705				
	18	GB02-000758				50.00			15.00		35.00	3.215	3.21		5.418E-0	13
	19	GB02-000759				50.00			20.00		30.00	3.091	3.118		-2.687E-0	12
	20	GB02-000760				50.00			25.00		25.00	2.979	3.026		-4.715E-0	12
	21	GB02-000761				50.00			30.00		20.00	2.87	2.934		-6.444E-0	12
	22	GB02-000762				50.00			35.00		15.00	2.776	2.843		-6.672E-0	12
	23	GB02-000763				50.00			40.00		10.00	2.851	2.751		9.999E-0	12
	24	GB02-000764				60.00			10.00		30.00	3.173	3.06		1.129E-0	11
	25	GB02-000765				60.00			15.00		25.00	3.057	2.968		8.864E-0	12
	26	GB02-000766				60.00			20.00		20.00	2.93	2.877		5.335E-0	12
	27	GB02-000767				60.00			25.00		15.00	2.818	2.785		3.307E-0	12
	28	GB02-000768				60.00			30.00		10.00	2.717	2.693		2.378E-0	2
_	~~	0000 000700	H	-					05.00						0.000	-

・重回帰分析検索結果画面に戻り、[LSM]アイコンをクリ ックし、組成最適化(LSM)画面を開きます。

 INTERCLAD 8: Property Prediction Composition Optimization (LSM)
 X

 File
 INTERCLAD 8: Composition Optimization (LSM)
 X

 Regression Equation
 INTERCLAD 8: Composition Optimization (LSM)
 X

 Regression Equation
 INTERCLAD 8: Composition Optimization (LSM)
 X

 Regression Equation
 Coefficient
 Content (mork)
 X

 A2033
 2.884500
 0.000
 0.000
 0.000
 X

 Na203
 2.8957600
 0.000
 0.000
 0.000
 0.000
 X

9 0											
9 ~											
- / \	\sim	INTER	GL	AD8: Res	ul	t of Co	mpos	ition (Optimi	izatior	ı (LSN
Glass No	Devisity at RT	Density at RT (R	<	All Prop (Res.)	2	SiO2	AI203	CaO	Na2O	K20	ZnO
GB07-174630	2.6004	1.55821E-4	A	1.55821E-4	A	73.613	0.0	0.0	17.157	0.0	9.22923
6B02-000769	2.6015	5.77309E-4	A	5.77309E-4	A	60 0	0.0	0.0	35.0	0.0	5.0
GB02-096226	2.59825	6.7398E-4	А	6.7398E-4	A	69.5025	0.0125	0.00704	22.511	0.02922	7.84736
GB02-096229	2.59809	7.34616E-4	А	7.34616E-4	A	74,859	0.02652	0.02026	16.238	0.01936	9.33514
GB02-096227	2.59802	7.609E-4	A	7.609E-4	A	7.005	0.00582	0.01654	20.678	0.01837	8.27574
GB02-016306	2.59796	7.86126E-4	А	7.86126E-4	A	69.010	0.01562	0.00976	23.309	0.00975	7.64422
GB02-000940	2.60206	7.906E-4	А	7.906E-4	A	60.311	4.99835	4.99658	0.01077	22.383	7.29972
GJ02-359367	2.60208	8.00263E-4	Α	8.00263E-4	A	64.580	6.11763	6.11404	11.339	6.18153	5.66649
GB02-000766	2.60211	8.1192E-4	А	8.1192E-4	A	72.702	5.11554	5.73833	2.45402	5.71759	8.27228
GB02-000942	2.60214	8.22174E-4	А	8.22174E-4	A	55.143	5.00078	4.99807	0.01039	28.2179	6.62901
GJ07-359372	2.60216	8.31445E-4	A	8.31445E-4	A	74.196	5.00556	5.29956	0.00834	6.49252	8.99785
GJ02-071993	2.59781	8.40768E-4	Α	8.40768E-4	A	3.798	0.00773	0.00836	30.172	0.01733	5.99592
GB02-000944	2.60219	8.40915E-4	А	8.40915E-4	A	37.842	4.9889	5.00703	0.0028	47.783	4.3758
GB07-022502	2.60219	8.4273E-4	A	8.4273E-4	A	62 107	23.863	4.99731	1.0E-5	4.38325	4.648 6
GB02-000952	2.59781	8.44044E-4	A	8.44044E-4	A	65.710	0.00905	0.00959	4.99194	19.497	9.79068
GB02-000962	2.60221	8.48938E-4	A	8.48938E-4	A	43.158	5.57704	5.57704	0.0	40.926	4 6115
GB02-000945	2.5977	8.49496E-4	А	8.49496E-4	A	69.684	0.00971	0.01948	4.97779	15.012.	10.296
GE02-138958	2.597/9	8.50168E-4	A	8.50168E-4	A	66.818	0.04827	0.0093	2.26455	20,558	10.301
	Class No. CG07-17463 E002-00762 E002-00762 E002-00762 E002-00762 E002-00761 E002-00762 E002-00762 E002-00763 E002-00764 E002-000764 E002-000764 E002-000764 E002-000764 E002-000764 E002-000764 E002-000942 E002-000942 E002-000942 E002-000942 E002-000942 E002-000942 E002-000945 E002-000945	Cases Na Deschip at X G07-1146.20 2 6013 B02-00076 2 6013 B02-0096227 2 59825 CB02-096227 2 598925 CB02-096227 2 508925 CB02-09627 2 508926 CB02-009627 2 50206 CB02-009642 2 60206 CB02-009627 2 50216 CB02-00962 2 60219 CB02-00952 2 59761 CB02-00952 2 59761 CB02-00952 2 59761 CB02-00952 2 59771 CB02-00952 2 59779 CB02-00952 2 59799 CB02-00952 2 59799 CB02-00952 2 59799 CB02-00954 2 59799 CB02-00954 2 59799 CB02-00954 2 59799	Joseph atta Deshit atta Density atta Density atta 600-171403 2.5004 1.55215-4. 1.55215-4. 600-006220 2.59825 6.733862-4. 2.59825 6.733862-4. 6002-006227 2.59802 7.434162-4. 1.55215-4. 1.55215-4. 6002-006227 2.59902 7.5905-4. 1.59126-4. 1.59126-4. 6002-00620 2.59796 7.9052-4. 1.59126-4. 1.59126-4. 6002-00604 2.60204 5.00268 1.50258-4. 1.50258-4. 6002-00766 2.60211 8.11252-4. 1.502716-4. 1.51274-4. 6002-00764 2.60214 8.212748-4. 6.40768-4. 1.502500	Case IV Desity attr <	Joseful att Density att TIR. Cell Prop (Res) 600-171403 2.6004 155212-4 155272-4 600-006220 2.6004 155212-4 155272-4 600-006220 2.5902 6.7398-4 A 6.7398-4 600-006220 2.5902 7.5092-4 A 7.9392-4 6002-006227 2.59001 7.6012-4 A 7.94165-4 6002-016305 2.59796 7.80126-4 A 7.9012-4 6002-016305 2.50201 7.90126-4 A 7.90126-4 6002-016305 2.50201 7.90126-4 A 0.90239-4 6002-016305 2.60201 8.00238-4 A 0.90239-4 6002-00064 2.60214 8.21274-4 A 8.12274-4 6002-00064 2.60214 8.21274-4 A 8.40168-4 6002-00064 2.60214 8.21274-4 A 8.40168-4 6002-00064 2.60214 8.20156-4 A 8.40168-4 6002-00064 2.60219 8.40168-4	Case IV Desky attr GB02-000040	Joseful attr Density attr Cell Prop (Res) Dock 600-171405 2.6004 155212-4 155272-4 7.5613 600-20070 2.6015 5.77308-4 5.77308-4 6.63882 600-20020 2.5020 6.73862-4 6.63882 4.6592 600-200220 2.50900 7.6304-4 6.6392 6.57308-4 4.692 600-200220 2.50900 7.6012-4 7.6013 4.7469-4 4.692 600-200527 2.50900 7.6012-4 7.6012-4 4.6010- 6.0023 600-200527 2.50020 7.9012-4 4.7012-4 6.0013-4 6.0010- 600-200504 2.50208 5.90254-4 8.002354-4 6.90234-4 6.912-4 600-200904 2.50208 5.002554-4 8.002354-4 8.002354-4 4.5102-4 600-2009042 2.60214 8.21745-4 8.21745-4 4.7102-4 7.912-4 600-2009042 2.60219 8.401564-4 8.401564-4 4.7102-4 7.912-4 600-2009076 2.60219<	Case IV Desky att Desky att <thdesky att<="" th=""> <thdesky att<="" th=""> <thdes< td=""><td>Case N Op-line att Density at RTI CTI Prop (Res) SIO2 AD26 CA 600-11463 2.5004 1.5521E-1 1.5521E-1 1.5521E-1 3.531.0 0.0 0.0 0.0 600-00627 2.5015 5.77308E-4 5.77308E-4 4.57308E-4 4.6738E-1 6.9522 0.0125 0.0020 600-00627 2.59020 7.73416E-4 7.7346E-4 7.695.0 0.0026,00220 0.00262 0.00262 0.00262 0.00262 0.00262,00220 0.00262,00220 0.00282,00164 0.0010,001562,00164 0.00262,00076 0.00262,00076 0.00262,00076 0.00238-4 N.00262,0164,000,00076,00090 0.00562,00164 0.00262,00076 0.00262,00076 0.00238-4 N.00262,00164,000,0010,00162,00076,00090 0.00562,00164,000,0010,00162,00076,00090 0.00562,00164,000,0010,00166,000,0010,00166,000,0010,00166,000,0010,00166,000,0010,00166,000,0010,00166,000,0017,000093 0.0027,00093,001,0017,00093,001,0017,00093,0017,000144,000164,000164,00164,00164,000164,0017,00014,00073,00093,000</td><td>Class N Desity at R CMIPProp (Rss.) SIG2 Algest CAO Na20 690-114600 2.600-1 55821E-4 A 155821E-4 A 0.00 0.011157 690-200701 2.600-1 577309E-4 A 155821E-4 A 692 0.011157 690-200701 2.605-5 577309E-4 A 693 0.026 0.017167 690-200702 2.59600 7.306E-4 A 67386E-4 A 692 0.0226 0.02261 0.02261 0.02261 0.02261 0.02261 0.02261 0.0262 0.02261 0.0262 0.02261 0.0262 0.02621 0.0262</td><td>Class N Op-Site at 0 Density at 71 (R.) CMI Ptor (RS2) SIO2 Approx Ca0 Na20 Ca0<!--</td--></td></thdes<></thdesky></thdesky>	Case N Op-line att Density at RTI CTI Prop (Res) SIO2 AD26 CA 600-11463 2.5004 1.5521E-1 1.5521E-1 1.5521E-1 3.531.0 0.0 0.0 0.0 600-00627 2.5015 5.77308E-4 5.77308E-4 4.57308E-4 4.6738E-1 6.9522 0.0125 0.0020 600-00627 2.59020 7.73416E-4 7.7346E-4 7.695.0 0.0026,00220 0.00262 0.00262 0.00262 0.00262 0.00262,00220 0.00262,00220 0.00282,00164 0.0010,001562,00164 0.00262,00076 0.00262,00076 0.00262,00076 0.00238-4 N.00262,0164,000,00076,00090 0.00562,00164 0.00262,00076 0.00262,00076 0.00238-4 N.00262,00164,000,0010,00162,00076,00090 0.00562,00164,000,0010,00162,00076,00090 0.00562,00164,000,0010,00166,000,0010,00166,000,0010,00166,000,0010,00166,000,0010,00166,000,0010,00166,000,0017,000093 0.0027,00093,001,0017,00093,001,0017,00093,0017,000144,000164,000164,00164,00164,000164,0017,00014,00073,00093,000	Class N Desity at R CMIPProp (Rss.) SIG2 Algest CAO Na20 690-114600 2.600-1 55821E-4 A 155821E-4 A 0.00 0.011157 690-200701 2.600-1 577309E-4 A 155821E-4 A 692 0.011157 690-200701 2.605-5 577309E-4 A 693 0.026 0.017167 690-200702 2.59600 7.306E-4 A 67386E-4 A 692 0.0226 0.02261 0.02261 0.02261 0.02261 0.02261 0.02261 0.0262 0.02261 0.0262 0.02261 0.0262 0.02621 0.0262	Class N Op-Site at 0 Density at 71 (R.) CMI Ptor (RS2) SIO2 Approx Ca0 Na20 Ca0 </td

- Propertyの[Target]欄に目標値をインプットします(密度 2.6 g/cm³)。
- ・[All Calc (LSM)]ボタンをクリックします。

- ・現れる[Question]ダイアログ(重回帰式の説明変数でない成分の初期値を0にしますか。重回帰式の説明変数でない成分値は固定されます)で[OK]ボタンをクリックします。
- ・自動計算が終わると、組成最適化(LSM)結果画面が表示されます。
- ・表のタイトル行のターゲット値との差 All Prop(Res.)を クリックして差の小→大順にソートします。All Prop(Res.)欄の右隣り欄を見ると、本例ではターゲット 値との差が 0.1%未満の A ランクのガラス組成が 153種 類(ガラス No.の背景が青色)得られていることがわか ります。それぞれのガラスの最適化された成分値が右に 表示されます。
- ・最適化例を一つ挙げると、No.388 (モデルガラス GJ02-359367)の場合、下記の組成で Density at RT が 2.602 g/cm³となります。

SiO₂ 64.58 mol%, Al₂O₃ 6.12%, CaO 6.11%, Na₂O 11.34%, K₂O 6.18%, ZnO 5.67%_o

・なお、7.で求めた重回帰式を使用して自動計算を行うことも可能ですが、その場合、27成分の組成の最適化となります。

11. 特性予測 - アルカリ土類ケイ酸塩ガラスのヤング率

下記の組成のアルカリ土類ケイ酸塩ガラスのヤング率(室温)を予測します

SiO₂ 45%, Al₂O₃ 12%, MgO 13%, CaO 20%, Y₂O₃ 7%, TiO₂ 3% (mol%)

<マニュアル第3章 D.2、第4章 4.2-4.6参照>

1) 重回帰分析のための検索条件設定(重回帰分析検索画面)→ 検索実施

- ・組成の検索条件を 20≦SiO2≦80 mol%とし、Glass
 System を Alkaline-earth Silicateに指定します(組成 条件の設定には色々なケースが考えられます)。
- ・特性には Young's Modulus at RT を選択し、出典は特許 以外 (NOT Patent) とします。

2) 検索結果(重回帰分析検索結果画面) → 説明変数成分項選択(成分項選択小画面)

🔯 INTE	RGLAD	8 : Data List for Reg elp	pression Analysis					- (×
4	÷ .	S 8 A.	84 25		K K ? (🧿 😥 IN'	TERGLAD 8:	Regression A	nalysis
		fotal Number Number of Source	573 ompon s 96 Prope	ent Uni erty Uni	t mol% v t Common v	Detail Information	*,-,*,/ Component	Analyze	
Delete	No.	Glass No.	Data Source	Year	Data Source Number	SiO2	oung's Modulus at (GPa)	Young's Modulus at (Predictive Value)	Young's (Re
	1	GJ02-003209	J. Ceramic Soc. Ja	1988	v. 096 p. 1012	30.00	1.067E+02		<u>^</u>
	2	GJ03-003210	J. Ceramic Soc. Ja	1988	v. 096 p. 1012	30.00	1.032E+02		-
	3	GB02-006471	Handbook of Glass	1986	v. 001 p. 0326	58.80	6.03E+01		
	4	GB02-006474	Handbook of Glass	1986	v. 001 p. 0326	52.30	6.59E+01		
	5	GB02-006477	Handbook of Glass	1986	v. 001 p. 0326	59.00	6.21E+01		
	6	GB02-006479	Handbook of Glass	1986	v. 001 p. 0326	55.80	6.68E+01		
	7	GB02-006480	Handbook of Glass	1986	v. 001 p. 0326	53.20	6.83E+01		
	8	GB02-006485	Handbook of Glass	1986	v. 001 p. 0326	59.60	6.86E+01		
	9	GB02-006487	Handbook of Glass	1986	v. 001 p. 0326	56.60	7.0E+01		
	10	GB03-006508	Handbook of Glass	1986	v. 001 p. 0336	50.00	8.1E+01		
	11	GB03-006509	Handbook of Glass	1986	v. 001 p. 0336	50.00	8.25E+01		
	12	GB03-006510	Handbook of Glass	1986	v. 001 p. 0336	50.00	8.28E+01		
	13	GB03-006511	Handbook of Glass	1986	v. 001 p. 0336	50.00	8.4E+01		
	14	GB03-006512	Handbook of Glass	1986	v. 001 p. 0336	50.00	8.36E+01		
	15	GB03-006513	Handbook of Glass	1986	v. 001 p. 0336	55.00	8.03E+01		
	16	GB03-006514	Handbook of Glass	1986	v. 001 p. 0336	55.00	8.16E+01		
	17	GB03-006515	Handbook of Glass	1986	v. 001 p. 0336	55.00	8.22E+01		
	18	GB03-006516	Handbook of Glass	1986	v. 001 p. 0336	55.00	8.32E+01		
	19	GB03-006517	Handbook of Glass	1986	v. 001 p. 0336	55.00	7.81E+01		_
_			4	4000		1 00 00	0.005 od		•

QUESTIC	NC	×
?	Selection of Explanatory Variables in Mu 1-Component Terms: 27 2-Component Terms: 0 3-Component Terms: 0 OK Cancel	Iltiple Regression Analysis:

- 573 件がリストアップされます。
- ・[Component]ボタンをクリックし、成分項選択小画面を 開きます。説明変数となる成分項は、1成分項のみとし ます。デフォルト条件により 27 成分が成分項となりま す。

ſ	Selectiion of 1-Con	nponent Terms	dition and	٦
	if necessary, ch	ange the following con	aluon : Appry	
- 1	Min. num. of gla	sses = 1 % of	total retrived glasses	1
- L	Min. num. of gla	sses = 2 glas	ses to one componer	ıt
	Select All C	omponent Clear	All Component	
			na component	
	Component	Number of Glasses	Hay Contant %	
2	Si02	573	60.000	
2	B2O3	70	35.000	
2	AI2O3	424	36.100	
	MgO	325	46.150	
	CaO	333	55.000	
*	BaO	81	45.000	
	Li20	50	24.400	
*	Na2O	204	31.500	
	K20	89	24.400	
	BeO	55	39.700	
	MnO	1	3.050	
	FeO	1	0.130	
*	ZnO	15	33.330	
*	SrO	80	45.000	
*	CdO	5	33.330	
	PbO	3	0.600	
	Cr203	1	0.004	
*	Fe2O3	15	4.900	

3) 重回帰分析実施(重回帰分析実行画面 → 重回帰分析検証画面)

Sile T	RGLAD 8 : Execution of Reg	ression Analysis					- 0	×
S 6	3 🗹 ? 🕼 🕼				INTERGLA	0 8: Regres	sion Analy	sis
Proper 0	ty 540 Young's Modulus at I	RT (Common)			xecute //er	rify Result		
Analys	is Condition		- Select Com	oonents				
Analysi	is Method: ⊜ y=Σa,x,+i	t.	Folget All	Component	Clear All Comp	mont	Apply	
	○ u=∑ a v ±		Select All	component	clear Air comp	ment	Арриу	
	• y-2 a _i x _i	xxx 2xi 299 ¥%	Exclude	component term	ns less than 3	data		
variable	ey: ●y ◯ 1/y	🔾 log y	Exclude	2-&3- 🛡 com	ponent terms und	ier [t]= 0.0 👻		
Select	Component	Coefficient	Std. Error	tValue	Component vs Property	Number	Component vs Property Correlation	
					Correlation	orData	Plot	
×	SiO2	7.04206E01	2.518	27.97	-0.53734	516	Figure	
×	B2O3	9.74954E01	7.235	13.476	-0.19922	70	Figure	
×	AI2O3	1.27794E02	4.534	28.184	0.31651	398	Figure	
×	MgO	1.50469E02	3.899	38.589	0.66954	304	Figure	
v	CaO	1.11249E02	3.707	30.013	-0.03850	312	Figure	
×	BaO	6.80630E01	5.848	11.639	-0.27821	73	Figure	
×.	Li2O	1.50233E02	11.932	12.591	0.05758	50	Figure	
	Na2O	2.80877E01	7.323	3.835	-0.53609	192	Figure	
×	K2O	2.61444E01	9.681	2.701	-0.36504	82	Figure	
×.	BeO	2.07404E02	5.202	39.870	0.49875	47	Figure	
×	ZnO	1.09489E02	15.617	7.011	-0.09067	15	Figure	
~	SrO	8.76814E01	5.484	15.990	-0.22006	66	Figure	
2	CdO	8.32692E01	17.395	4.787	-0.09318	3	Figure	
~	Fe2O3	-4.75316E02	56.552	-8.405	-0.18667	15	Figure	
×.	As203	1.49198E01	1427.956	-0.010	-0.12060	16	Figure	
×	Y2O3	2.94557E02	19.288	15.271	0.29927	42	Figure	
×	La2O3	-9.25125501	175.050	-0.528	-0.05015	6	Figure	

 [Analyze]ボタンをクリックすると、重回帰分析実行画面 が開き、[Execute]ボタンをクリックして重回帰分析を 実行します。[Question]ダイアログが現われ、[OK]ボタ ンをクリックすると、重回帰係数等が計算されて表示さ れます。

- [Verify Result]ボタンをクリックして検証画面を開き ます。寄与率 R²は 0.8826 となります。
- ・データに直線 y=x より離れた点もみられますが、R²が 0.8以上となっているため、離れた点の影響は小さいと 考えられます。

🙋 INTE	RGLAD 8 : Execution of Reg	ression Analysis					- 0	\times
File To	ools Help							
😒 é	3 🗹 🕐 🚳 🕼				INTERGLAI	0 8: Regres	sion Anal	ysis
Proper 0	ty 540 Young's Modulus at F	RT (Common)			Execute Ve	rify Result		
Analys	is Condition		Select Com	ponents				
Analysi	s Method: ○ y=Σa _i x _i +		Select A	I Component	Clear All Comp	onent	Apply	
	y=Σa,x,+a	x, Σx, 2 99 👻	% 🗹 Exclude	e component terr	ns less than 3	data		
variable	ey: ●y ◯ 1/y	O log y	Exclude	e 2-&3- 💌 com	ponent terms un	der t = 0.0 💌		
Select	Component	Coefficient	Std Error	tValue	Component vs Property	Number	Component vs Property	t /
Concor	Component	ocentratent	old. Entr		Correlation	of Data	Correlation Plot	1
×.	SrO	9.42283E01	4.316	21.831	-0.22006	66	Figure	_ ^
	CdO	8.04829E01	13.349	6.029	-0.09318	3	Figure	
	Fe2O3	-4.61331E02	43.723	-10.551	-0.18667	15	Figure	
(🗆)	As2O3				-0.12060	16	Figure	
×	Y2O3	3.06915E02	14.831	20.694	0.29927	42	Figure	
(🗆)	La2O3				-0.05015	6	Figure	
V	Nd2O3	2.51317E02	70.430	3.568	0.07490	10	Figure	
*	TiO2	1.47284E02	6.946	21.204	0.13222	93	Figure	
s.	ZrO2	2.22362E02	18.103	12.283	0.23143	90	Figure	
	SnO2	-3.33742E03	1292.065	-2.583	-0.11327	11	Figure	
(🗆)	P205				-0.18592	38	Figure	
V	BaCl2	9.82670E01	14.949	6.574	-0.06350	7	Figure	-
*	N	4.18528E02	26.052	16.065	0.19848	5	Figure	
×.	AIN	2.50889E02	11.759	21.336	0.17220	7	Figure	
	SIC	1.48839E02	32.333	4.603	0.02937	5	Figure	
2	Si3N4	4.95383E02	48.296	10.257	0.15111	9	Figure	
	Xx	-4.81299E02	346.422	1.889			Figure	-

・重回帰分析検索結果画面で t 値を調べると、As2O3、 La2O3、P2O5で絶対値 2 より小さい値となっています。 そこでこれらの成分の左の選択チェックボックスのチ ェックをはずし、再度[Execute]ボタンをクリックして 重回帰分析を行います。この操作により、これらの成分 を成分項から除き、t 値がすべて 2 以上の成分項からな る重回帰式が得られます。

- ・検証画面を開いて寄与率 R²を確認すると 0.9265 となっています。
- ・この重回帰式を使って特性を予測することとします。

4) 特性予測(特性予測画面)

- ・重回帰分析検索結果画面に戻り、何もガラスを選択せず に特性予測の[PROP]アイコンをクリックします。現れ る[Question]ダイアログの[OK]ボタンをクリックし、特 性予測画面を開きます。
- Content の [New] 欄に成分値(SiO2 45%, Al2O3 12%, MgO 13%, CaO 20%, Y2O3 7%, TiO2 3%)を入力し、 [Calculate]ボタンをクリックします。
- Property の[Predictive Value]欄にヤング率の予測値 114.1 GPa が表示されます。

12. 特性予測(3次式) - ホウケイ酸塩ガラスの密度 SiO₂-B₂O₃-K₂O 系組成(下記)のガラスの密度(常温)を予測します SiO₂ 40%, B₂O₃ 30%, K₂O 26%, CaO 3%, Al₂O₃ 1% (mol%)

<マニュアル第3章 D.2、第4章 4.2-4.6参照>

1) 重回帰分析のための検索条件設定(重回帰分析検索画面)→ 検索実施

- ・組成の検索条件を以下とします。
- $SiO_2 + B_2O_3 + K_2O \ge 95 \text{ mol}\%$
- ・特性は Density at RT とします。
- ・出典は特許以外 (NOT Patent) とします。

2.0	F 14	200.15	NH	2.5. ЖЖ	TO P IN	TERO	LAD 8	; Regression A	naty
		-			inter a				
	1	of all Headless	187 Averages	and such a	. Meridia		B		
		Autories of Sector	a a / 100	way the Cantonne -		0	Denge	- ()	
-	-	iner ter	Louisers	Name Dates Division	-		8301	Caracter and Carac	-
2.1	. 1	2006-021288	Printhesis of Class.	17770 in 1877 p 2008	9.00	95.00	35.00	(2.849)	
	1	31200-071286	Plandeteri of Disers.	TASE = 201 a 100	18.00	+.79	28.01	1400	
	1	1000-001-00	wanteen of Disea.	1998 - 505 p. 1998	10.00	+10	24.00	1418	
	- 18	10000-001-001	Interaction of Classes.	from a deri p inter	-0.00	11.00	10.01	2.029	
		2010/02/07 100	Pandoor of Disco.	1000 n.001 a.300	10.00	15:50	29.00	2.498	
		amed-101-461	Pandossi of Class.	1000 × 001 ± 100	12.00	12:39	10.00	1.107	
		10000-011-004	Interactions of Lines.	1000 x 001 p 200	00.00	29-20	79-01	3.000	
2		0000-007-485	Interations of Cases.	1000 - 201 p 200	9400	29.30	76.01	240	
	+	303975-2011-685	Pandors of Glass.	1000 + 101 ± 200	10.00	#9-30	10.00	3.477	
5	-16	1000-07-02	presentation of Column	1000 x 101 p. 100	72.00	12.00	19-20	3413	
2	-1	0.000-017-008	Handburd of Clark.	tream - Gert p. 1000	25.00	4.00	10.00	2.645	
		2010/01/01	Printerio of Chart.	1000 - 001 a 100	91.00	4.00	10.00	2.475	
	12	1000-0748	Frankrish of Galaci.	1000 + 001 p. 100	10.00	72.52	14:55	2.000	
	- 14	NAME OF ALC: NO.	interaction of Coast.	1940 - 001 p. 1888	10.00	75.00	10.00	2.044	
	10	man and any	interaction of Olympic .	1000 in 201 g 200	100.00	14.00	0.01	2391	
	- 10	D+10-2869	Plantinet of Class.	1008 + 001 p. 768	10.00	35.08	2.01	212	
	10	propriet allow with	Adventional of Column	1000 h-101 g 1000	1 10.00	10.00	+ 14	1.404	
	- 10	10000-011-010	interactions of Canad.	1000 h 101 p 1000	- 10.00	41.00	1.64	1442	
	- 10	10000 AV1 (2100	Planting of Third.	trans is block in some	100.000	14.70	1.00	2.016	

3) 重回帰分析(1次式)

QUESTION	×
Selection of Explanatory Variables in Multiple Regression Analys 1-Component Terms: 0 1-Component Terms: 0 1-Component Terms: 0	is:
OK Cancel	

351件のガラスがリストアップされます。

- ・まず比較のために1次式による重回帰分析を行います。
- [Component]ボタンをクリックし、1 成分項の選択画面で[OK]ボタンをクリックすると、10 個の1 成分項が選択されます。

	Wantenary, ch	ange for hillow	ing 2.246	ation : heate	
	With sum of pla	1 - 2288	2.0	total rotrived glasses	L.
	With the state of gas		ates	ies to one component	Ľ
	Select AP C	manual (Chest	All Component	
	Corporat	Number of D		Hat Contain the	
ε	903		301	87,218	
81	86703		361	82 686	
1	820		281	82.990	
8	4000		28	3 199	
0	Mu0			0.018	
2	040			3,199	
	(Bat)		1	1,290	
ł,	1480		13	4.590	
80	Na20		44	1.488	
	740		1	0.780	
8	2e0		- 1	1.879	
4	Pa0			0.110	
Ċ.	F#2018		. 1	0.004	
10	As207		18	0.998	
	86203		2	0.000	
	1408		1	0.029	
Q,	(DH		- 2	0.140	
10	1/02		4	0.50%	

	3 🗵 🕐 🔞			IN	TERGLAD 8	3: Regressi	on Analys
Proper	ty				vecute Veril	v Result	
	0510 Density at RT (0	Common)			iccute form	, nesan	
Analys	is Condition		Select Com	ponents			
Analysi	is Method : ○ y= ≿ a,x,+k	¢.	Select A	Il Component	Clear All Compo	nent	Apply
	⊚ y=Σa,x,+a	1,x, Σx, 2 99 🚽	6 🗹 Exclude	e component tern	ns less than 3	data	
variable	ey: ● y ◯ 1/y	🔾 log y	Exclude	e 2-&3- 🔻 com	ponent terms und	er t = 0.0 🔻	
					Component		Component
Select	Component	Coefficient	Std Error	tValue	vs Property	Number	vs Property
					Correlation	of Data	Correlation Plot
v	SIO2	2.42180E00	0.014	171.814	0.22752	276	Figure
×	B2O3	1.97499E00	0.024	81.004	-0.57124	276	Figure
2	K20	2.81713E00	0.039	72.181	0.47269	276	Figure
2	AI2O3	-1.22568E-01	1.601	-0.077	-0.17345	27	Figure
×	CaO	1.76864E00	2.252	0.785	-0.02108	9	Figure
2	Li2O	-1.31340E00	1.105	-1.188	-0.19504	13	Figure
	Na2O	1.84135E00	0.383	4.814	-0.12867	64	Figure
	ZnO	6.47575E00	4.250	1.524	0.02616	3	Figure
	As2O3	-4.91010E00	12.073	-0.407	-0.05368	10	Figure
2	U02	3.04447E01	15.747	1.933	0.07717	4	Figure
	Xx	-1.99327E01	13.317	-1.497			Figure

- [Analyze]ボタンをクリックして重回帰分析実行画面を 開きます。
- [Execute]ボタンをクリックして重回帰分析を実行し、
 [Verify Result]ボタンをクリックして検証画面を開くと、
 寄与率 R²が 0.5806 と低いことがわかります。

4) 重回帰分析(3次式)

🙋 Se	lect Component Ten	ns		×
E.	Selectiion of 1-Con	ponent Terms		-
	If necessary, cha	inge the following con	dition : Apply	
	Min. num. of gla	sses = 1 % of	total retrived glasses	s
	Min. num. of gla	sses = 2 glas	ses to one componer	nt
Ľ				
	Select All Co	omponent Clear	All Component	
	Component	Number of Glasses	Max. Content %	
V	SiO2	351	97.210	
V	B2O3	351	82.000	
V	K20	351	62.500	
V	AI2O3	28	3.190	
	MgO	1	0.310	
V	CaO	9	3.390	
	BaO	2	1.280	
r	Li2O	13	4.500	
*	Na2O	68	5.000	
	FeO	1	0.160	
V	ZnO	3	1.870	
	PbO	1	0.110	
	Fe2O3	1	0.004	
V	As2O3	10	0.550	
	Sb2O3	2	0.090	
	TiO2	1	0.020	
	он	2	0.140	
V	U02	4	0.500	
	DACK	Next	Canaal	
	BACK	Next	Cancel	

💋 Sel	ect Component Terr	ns				×			
Selection of 2-Component Terms									
If necessary, change the following condition : Apply									
🖌 Min	total retrieved gla	sses							
🗹 Min	. num. of glasses :	-	10 glasses to one component						
🖌 Ma	x. num. of compon	ents =	ts = 50 % of num, of 1-component						
	-					1			
	Select All Co	mpon	nponent Clear All Component						
	Component	Num	ber of (Glasses	Max. Content %				
r	SiO2			351	97.210	i i			
~	B2O3			351	82.000				
V	К20			351	62.500				
V	AI2O3			28	3.190				
	MgO			1	0.310				
	CaO			9	3.390				
	BaO			2	1.280				
	Li2O			13	4.500				
V	Na2O			68	5.000				
	FeO			1	0.160				
	ZnO			3	1.870				
	PbO		1		0.110				
	Fe2O3			1	0.004				
	As2O3			10	0.550				
	Sb2O3				0.090				
	TiO2		1		0.020				
	он			2	0.140				
	U02			4	0.500				
	BACK	Nex		ок	Cancel				

 ・重回帰分析検索結果画面に戻り、成分項の 選択を3成分項までデフォルト条件のま ま選択すると、1成分項:10、2成分項:
 10、3成分項:1の成分項数となります。

Select	ect Component Terr	ns			×				
Select	on or 5-componer	it remis			_				
If necessary, change the following condition : Apply									
🖌 Min	. num. of glasses	= 15	% of	total retrieved gla	sses				
🖌 Min	Min. num. of glasses = 10 glasses to one component								
🖌 Max	k. num. of compon	ents = 30	% of	num. of 1-compor	ent terms				
				-					
	Select All Co	omponent	Clear	All Component					
	Component	Number of	Glasses	Max. Content %					
r	SiO2		351	97.210	-				
~	B2O3		351	82.000					
V	К20		351	62.500					
	AI2O3		28	3.190					
	MgO		1	0.310					
	CaO		9	3.390					
	BaO		2	1.280					
	Li2O		13	4.500	U				
	Na2O		68	5.000					
	FeO		1	0.160					
	ZnO		3	1.870					
	PbO		1	0.110					
	Fe2O3		1	0.004					
	As2O3		10	0.550					
	Sb2O3		2	0.090					
	TiO2		1	0.020					
	он		2	0.140					
	U02		4	0.500	-				
	BACK	Next	ок	Cancel					

🙋 INTE	RGLAD 8 : Execution of Reg	ression Analysis						-		×
File To	ools Help									
1	3 🗹 🕐 🥑 🗐					INTERGL	AD 8: Regree	sion	Anal	lysis
Proper	ty 0510 D	Density at RT (Com	imon)	Execute Verify Result						
Analys	is Condition			Select Compon	ents					
Analysi	is Method : $\bigcirc y = \sum a_1 x_1 + \sum a_2 x_1 + \sum a_3 x_1 + \sum a_3 x_3 $	ΣΣb _{ii} x _i x _i +ΣΣΣο	c _{iik} x,x,x,+k	Select All Co	mnonent (1	ear All Component		A.	noly	
	e v=Σax+2	ΣΣΡ.ΧΧ.+ΣΣΣ	c	Exclude co	mponent terms k	ee than 3	data	1 14	ppij	
			ijki jiki xixi	1.00.0	Exclude Co	83 Compos	ant terms under itte	0.0	1	
variable	ey: ®y ⊖ 1/y	🔾 log y			E EACIDDE 2	as. Compos	ent territs under jd-	0.0		
Select	Component	Coefficient	Std. Error	t/alue	Component vs Property Correlation	Number of Data	Component vs Property Correlation Plot			
*	SiO2	2.33276E00	0.027	86.349	0.21148	276	Figure	1		-
*	B2O3	1.69433E00	0.049	34.639	-0.54966	276	Figure	1		
*	к20	1.40634E00	0.082	17.208	0.44020	276	Figure	1		
	AI2O3	5.44621E02	196.811	2.767	-0.19753	27	Figure	1		
	CaO	3.15990E00	1.285	2.458	-0.02668	9	Figure	1		
	LI20	1.63100E00	0.658	2.477	-0.23199	13	Figure			
*	Na2O	9.06973E00	18.585	0.488	-0.10844	64	Figure			
*	ZnO	2.37599E00	3.324	0.715	0.02920	3	Figure			
	As2O3	3.03789E00	6.524	0.466	-0.06520	10	Figure			
	U02	2.63662E01	8.443	3.123	0.08926	4	Figure	1		
	SiO2*B2O3	-1.37953E-01	0.177	-0.781	-0.36814	276	Figure			
*	SiO2*K2O	2.09587E00	0.221	9.476	0.77970	276	Figure			
*	SiO2*Al2O3	-5.77188E02	207.553	-2.781	-0.19892	27	Figure			
	SiO2*Na2O	-3.36907E00	19.525	-0.173	-0.12000	64	Figure			
	B2O3*K2O	2.78566E00	0.298	9.349	-0.05897	276	Figure			
	B203*AI203	-5.13687E02	183.879	-2.794	-0.21751	27	Figure			
*	B203*Na20	-1.49483E01	19.415	-0.770	-0.16654	64	Figure			

INTERGLAD 8 : W File Help INTERGLAD8: Regression Analysis a 👔 😫 😫 perty : Density at RT (Con $\begin{array}{c|c} & & \\ & & \\ \hline & & \\ R^2 & \\ \hline & & \\ Sa_ix_i^+\Sigma\Sigma b_{ij}x_ix_j^+\Sigma\Sigma\Sigma c_{ijk}x_ix_jx_k^{+a}x_x \end{array}$ 0.8848 2.5 al Std. Error
 att
 Std. E101
 Value

 2.332
 7.7025-02
 8.635E+1

 1.694
 4.891E-02
 3.646E+1

 1.696
 8.772E-02
 1.721E+1

 5.446E+02
 1.968E+02
 2.77

 3.16
 1.285
 2.44

 1.631
 6.585E+01
 2.44

 9.07
 1.859E+01
 4.891E-02
 3.464E+01 1.721E+01 2.767 2.458 2.477 2.2 4.880E-01 7.148E-01 9.07 2.376 3.324 7.148E-01 6.524 4.656E-01 2.1 3.038 2.637E+01 8.443 3.123 -1.380E-01 1.767E-01 -7.807E-01 02*B2O3 Mode — Detail Delete 1.9 2.0 2.1 2.2 2.3 2.4 Delete a Source Undo Measured Val Scale Linear 💌 Clos

- ・重回帰分析実行画面で重回帰分析を行い、検証画面を開 くと R²が 0.8848 となっており、良好な値であることが わかります。
- ・しかし、重回帰分析実行画面でt値を調べると、絶対値が1未満の成分項が7あります(1成分項3、2成分項4、3成分項0)。

- ・そこで重回帰分析画面の右上[Select Component]欄の3 行目の |t|の最小値設定欄で、下記の手順により、 |t|の 小さい成分項の除去・重回帰分析実行を繰り返します。 (一度に除去せず、少しずつ行います)
- 2,3 成分項 |t|=1.0 より小を削除して計算 ('2-&3-'と'1.0'を選択して[Apply]ボタンをクリックし、 [Execute]ボタンをクリックします)
- ② all 成分項 |t|=1.0 より小を削除して計算
- ③ 再度、all 成分項 |t|=1.0 より小を削除して計算
- 以上の結果、|t|はすべて1以上となり、 R^2 は0.8759
- となります。これで重回帰式が完成します。

5) 特性予測(特性予測画面)

INTERGLAD 8 : Property Prediction										×
File Help										
88	😒 🗃 🕜 🕼 INTERGLAD8: Prop									tion
Regression Equation										
		Coefficient				()				
Component	Density at RT				Initial	New	\mathbf{N}			
SiO2	2.324E00				/	40.000	<u>^</u> \			
B2O3	1.643E00					30.000	_			
K20	1.371E00					26.000		Glass-F	orming Re	gion
AI2O3	3.857E02					1.000				-
Ca0	2.308E00					3.000				
Li2O	1.765E00					0.000	1			
Component	Density at RT				Initial	New				
SI02*B203						0.120	•			
Si02*K20	2.198E00					0.104		-	_	
SiO2*Al2O3	-4.110E02					0.004		C	alculate	
Q10028N1020						0.000	-	Clear	New Con	tent
				Total	0.000	100.000	%		Reset	
Property										·
	Specified		Unit	Predictive Va	alue					
🔶 Densit	vatRT		a/cm3		2.771					
•			~							
i i i i i i i i i i i i i i i i i i i									Closes	
									CIUSE	

- ・重回帰分析検索結果画面に戻り、特性予測[PROP]アイ コンから特性予測画面を開きます。
- [Regression Equation]欄の[Content New]欄に SiO2 40
 mol%, B2O3 30%, K2O 26%, CaO 3%, Al2O3 1%を入力し、[Calculate]ボタンをクリックします。
- ・特性欄の予測値に密度 2.771 g/cm³が計算されて表示されます。

構造データの検索と解析

13. 組成と構造の相関調査 - SiO2量と架橋酸素(Bridging Oxygen)の割合

<マニュアル第3章E、第4章5参照>

- INTERGLAD 8 : Search ! Tools Help i 🖬 🗃 🝸 😝 😝 🤜 INTERGLAD 8: Glass Structure te Not Specified 💌 DB Site (
 Server
 User Data at% Periodic Table OR OR OR AND ¥ ESR NMR XPS 🗌 X-ray AND V 1000 -First Author 💌 Search Reset
- ・構造の[Description]欄に Bridging Oxygen Information の Bridging Oxygen 中の BO/[totalO]を指定し、 [Element]欄に Si-O-Si を指定します。

2) 検索結果(構造検索結果画面)

Tot	(
To		ata Source List				Detail	Informa	ation	Componen	it		
	Total Number 159 Component Unit mol%					Delete	+*./		Property			
Nu	mber of	Sources	15			Undo			Structure			
Delete	No.	Glass No.	Data Source	Year	Data Source Number	BO / total O (B-O-B) (%)	BO / total O (B-O-SI) (%)	8	O / total O (AI-O-AJ) (%)	BO / to (AI-O (%		
	1	S-00503	Physics and Chemi	1990	v. 031 p. 0030			_				
	2	S-00504	Physics and Chemi	1990	v. 031 p. 0030							
	3	S-00505	Physics and Chemi	1990	v. 031 p. 0030							
	4	S-00506	Physics and Chemi	1990	v. 031 p. 0030							
	5	S-00507	Physics and Chemi	1990	v. 031 p. 0030							
	6	S-00549	J. Chemical Soc. Ja	1981	v. 089 p. 0599							
	7	S-00550	J. Chemical Soc. Ja	1981	v. 089 p. 0599							
	8	S-00552	J. Chemical Soc. Ja	1981	v. 089 p. 0599							
	9	S-00553	J. Chemical Soc. Ja	1981	v. 089 p. 0599							
	10	S-00554	J. Chemical Soc. Ja	1981	v. 089 p. 0599							
	11	S-00555	J. Chemical Soc. Ja	1981	v. 089 p. 0599							
	12	S-00556	J. Chemical Soc. Ja	1981	v. 089 p. 0599							
	13	S-00557	J. Chemical Soc. Ja	1981	v. 089 p. 0599							
	14	S-00558	J. Chemical Soc. Ja	1981	v. 089 p. 0599							
	15	S-00559	J. Chemical Soc. Ja	1981	v. 089 p. 0599							
	16	S-00560	J. Chemical Soc. Ja	1981	v. 089 p. 0599							
	17	S-00561	J. Chemical Soc. Ja	1981	v. 089 p. 0599							

- ・159件のガラス(出典15件)がリストアップされます。
- Si-O-Siのみでなく、Al-O-Al、Si-O-B、Si-O-Al等の[元素-O-元素]のデータもリストに表示されます。

1) 検索条件設定(構造検索画面) → 検索実施

- SiO2量-BO/[total O](Si-O-Si)の XY プロットを表示します。また本例ではフィッティング曲線の一次式を選択しています。
- ・組成を指定していないため、各種の成分を含みますが、
 SiO2量の増加により、架橋酸素量が増える傾向がわかります。

14. 構造因子間の相関調査 - アルカリケイ酸塩ガラスの Q²と非架橋酸素(NBO)割合

検索実施

 \rightarrow

<マニュアル第3章 E、第4章5参照>

- File Tools Help INTERGLAD 8: Glass Structur ate Not Specified 💌 INTERGLAD Data (
 Server
 User Data OR OR OR ESR XPS 🗌 X-ray ian INMR Neut AND V 1000 -Max Data First Author 💌 Re
 - ・ガラス系を Alkali Silicate に指定します。
 - 構造情報として Bridging Oxygen Information の Qn
 Distribution 中の Q2/totalX、および Bridging Oxygen
 中の NBO/ [totalO]を指定します。

2) 検索結果(構造検索結果画面)

1) 検索条件設定(構造検索画面)

INTERGLAD 8 : Search St

🔯 INTE	RGLAD	8 : Data List of Str	ucture						- 0	;	×
File To	ols He	alp									
+	*	588	🙈 😫 🗮 🛱 🌘		1 👔 🤤 😭		INT	ERGLAD	8: Glass Strue	ctu	re
Data Source List						Detail	Inform	Component			
Tot	Total Number 42 Component Unit mol% 💌				Delete	*	5/	Property			
NUT	nber of	Sources 9	\geq			Undo			Structure		
Delete	No.	Glass No.	Data Source	Year	Data Source Number	Glass No (Property)	NBO / total O (0) (%)	NBO / total O (Si-O) (%)	Q2 / total X (Si) (%)	I	-
	1	S-00119	J. Non-Crystalline S.	2002	v. 297 p. 0220	GJ02-219523	2.86E+01	(10)	1.0E+	01	2
	2	S-00120	J. Non-Crystalline S.	2002	v. 297 p. 0220	GJ02-219524	4.01E+01		2.3E+	01	
	3	S-00121	J. Non-Crystalline S	2002	v. 297 p. 0220	GJ02-219525	5.49E+01		3.6E+I	01	
	4	S-00122	J. Non-Crystalline S	2002	v. 297 p. 0220	GJ02-219526	2.86E+01		1.0E+	01	
	5	S-00123	J. Non-Crystalline S	2002	v. 297 p. 0220	GJ02-219527	2.86E+01		1.0E+	01	1
	6	S-00662	J. Materials Science	1993	v. 028 p. 3473	GJ02-141512	8.22E+01		9	9.3	
	7	S-00663	J. Materials Science	1993	v. 028 p. 3473	GJ02-141513	8.23E+01		3.05E+	01	
	8	S-00664	J. Materials Science	1993	v. 028 p. 3473	GJ02-141514	7.03E+01		6.06E+I	01	
	9	S-00665	J. Materials Science	1993	v. 028 p. 3473	GJ02-141515	5.11E+01		3.3E+I	01	
	10	S-01150	J. Jpn. Inst. Metals	1983	v. 047 p. 0382	G102-216018	4.5E+01		2.3E+I	01	÷
										_	

- ・42件のガラス(出典9件)がリストアップされます。
- [Search Property DB]アイコンをクリックして対応する
 特性データの Glass No.を表示します。

3) Q²と NBO の相関 (XY プロット画面)

y= a1X + a0

30.00 40.00 Q4 / total X (Si) %

Del

-

Detail

Delete a Source

a1: -5.387E-01 a0: 5.370E+01

50.00

y = a1X + a0

60.00

Undo

Reset

) -

70.00

Close

INTERGLAD 8: XY Plot

X = 8.043E+01 Y = 2.114E+01

iNTERGLAD 8 : XY Plot File Tools Help

60.00

20.00

Q4 / total X (S

Linear

10.00

Linear

20.00

(0) 40.0

OGN 30.00

・Q2/totalX(Si)-NBO/ [totalO](O)の XY プロットを表示 します。

・Q²の増加と共にNBO割合も増加しており、ほぼ比例関係にあることがわかります。なお、この関係からはずれた位置にある2点のガラスは特性詳細画面を調べると(構造検索画面で該当するガラス行をクリックし、

[Detail Data of Property]アイコンをクリックし て詳細画面を開く)、いずれも急冷したガラスであるこ とがわかり、これが他のガラスと同じカーブに乗らない 原因と考えられます。

- ・比較として Q4/totalX(Si)-NBO/ [totalO](O) の XY プ ロットを表示します。
- ・この図より、Q²の場合とは異なり、Q⁴が増加すると当 然ですが NBO 割合が減少する様子が示されます。

・また、本例で抽出されたガラスはいずれもアルカリを含むため、Li2O、Na2O、K2Oの合計量(mol%)とNBO割合との関係を調べると、左図のようになります。これにより、アルカリ量とNBO割合がほぼ比例し、アルカリ量の増加により非架橋酸素が増加することが示されます。

なお、Li2O+Na2O+K2O 合計量は構造検索結果画面で [+,-,*,/]ボタンを使用して表示します。