特 集 シンメトリーとガラス

多様な配位多面体を有するチタン酸塩の発光 ~希土類フリー蛍光体として~

東北大学大学院工学研究科応用物理学専攻

高橋 儀宏・藤原 巧

Photoluminescence in titanates with various polyhedral types for rare-earth free phosphor

Yoshihiro Takahashi, Takumi Fujiwara

Department of Applied Physics, Graduate School of Engineering, Tohoku University

1. はじめに

発光材料は蛍光灯や表示用ディスプレイ,さ らに黄色蛍光体と青色 LED の組み合わせによ る白色 LED など,我々の文化的生活に必要不 可欠であることから大量に生産・消費されてい る。一般に発光材料はホスト結晶に発光イオン を賦活することで作製されるが,高輝度な発光 を達成するためには輻射遷移確率の高い発光中 心が望ましいことから*f*-*f* 遷移を有する希土類 イオンがドーパントとして主に選択される。

今日の先端産業には希土類元素が必須であり,他のレアメタルと同様その資源確保が重要となっている。しかしながら希土類元素の地殻中における存在量は少なく,さらに希土類含有鉱石の分布/採掘場所が偏在化している¹¹。このことから希土類化合物は一般に高価であり,

〒980-8579 宮城県仙台市青葉区荒巻字青葉 6-6-05 TEL 022-795-7965 FAX 022-795-7963 E-mail:takahashi@laser.apph.tohoku.ac.jp 産掘国にとっては戦略的物質となっている。さ らに電気自動車や発電用モーターに内蔵される 希土類磁石にも多く用いられており,最近の環 境・エネルギー問題の高まりから希土類元素の 需要・消費は今後さらに加速すると推察され る。天然資源が乏しく希土類元素を完全に輸入 依存している日本において,省希土類/希土類 フリーの新しい発光材料の研究開発は将来取り 組むべき課題の一つであると考えられる。

2. チタン酸塩の発光

遷移金属イオンと酸素イオンから成る配位多 面体を有する化合物に発光を示すものが存在 し、これは主に電荷移動遷移(Charge-transfer; CT)により形成した電子一空孔の再結合に基 づいている。身近な遷移金属であるチタンTi は地殻中に比較的多く埋蔵しており(Clarke 数第9位)、天然鉱物として産出されるチタニ ア(TiO₂)やペロブスカイト(CaTiO₃)は光 触媒や誘電材料などへ応用されている。また六 方晶系 BaTiO₃や BaTi₂O₅ 結晶は特異な誘電応

図1 報告されているチタン酸塩の励起ピーク波数と 消光温度との関連。

答を示すことから多くの学術的興味を集めてお り^{2.3)}. これらチタン酸塩の物理特性はTiイオ ンの配位多面体に強く依存する。光物性に関し ては、チタン酸塩は紫外(UV)光領域の励起 により青~緑色の発光を示すことが知られてい るが. それらの多くは室温以下の低温でしか確 認されない。これまで報告されているチタン酸 塩における励起バンドのピーク波数と消光温度 との関係を図1に示す⁴⁾。この図から室温発光 を示すチタン酸塩の傾向として、①孤立した Ti -O ユニット(孤立 TiO₆ 八面体もしくはピラミ ッド型 TiO₅) を有し、② CT 遷移による励起 バンドが 36000 cm⁻¹(278 nm) 付近に存在する ことが挙げられる。最近では、室温青色発光が Ar⁺ビーム照射した SrTiO3 薄膜においても報 告されており、Ti-O 配位多面体を有する化合 物はフォトニックデバイスへの応用展開も期待 される。これまで著者らは省希土類に立脚し た発光材料開発の一環とし、多様な配位多面体 を有するチタン酸塩および同族元素であるジル コン酸塩の合成および発光特性評価を行ってき た。本稿ではそれら研究の一部について紹介さ せていただく。

図2 UV 光照射下 (254 nm) における天然鉱物ベニ トアイト(上)とフレスノイト(下)。

3. ベニトアイト族結晶

孤立した TiO₆ ユニットと Si₃O₉ リングによ り構成されるベニトアイト (BaTiSi₃O₉) は 1907 年にカリフォルニアで発見された鉱物であ り⁶⁾, UV 光照射下において強い青色発光を示 すことが知られている (図2上)^{7.8)}。ベニトア イトは蛇紋岩中に生成するが,蛇紋岩は地殻変 動により生じる変成岩である。このことから, ベニトアイトは変成作用 (高温・高圧)の条件 下で結晶化することが理解できる。実際に著者 らは量 論組成粉体を用いた高圧合成(約5 GPa)を試みたが,この圧力条件ではベニトア イト相の形成は確認されなかった⁹⁾。一方で, 高圧相シリケート鉱物の Si サイトを Ge で置換 するにより合成条件を低圧化できることか ら¹⁰⁾, BaTiSi₃O₉ 組成において Ge 置換すること

図3 (a)ベニトアイトの結晶構造。(b)合成ベニトアイト相 (BaTiSi_{1-s}Ge_sO₉) の発光特性。UV 光照射下 (254 nm) における写真も併せて示す。

でベニトアイト相の安定化を試みた。上述のよ うに BaTiSi₃O₉組成においては固相反応法によ りベニトアイト相は得られなかったが、Ge 置 換量 x=0.75 (BaTiSi_{3-x}Ge_xO₉ 組成) において ベニトアイト相の単相析出を粉末X線回折 (XRD)分析により確認した。また UV 光照射 下において、このGe 安定化ベニトアイトから 430 nm にピークを有する明瞭な青色発光が室 温において観察された(図3)。これは配位多 面体中のO²⁻からTi⁴⁺のd軌道へのCT 遷移 (O²⁻-Ti⁴⁺→O⁻-Ti³⁺) による励起と、その後 の³T₁→¹A₁ 遷移(緩和)によるものと解釈され る⁴。さらに Ge 置換を進めると, x=2.0 にお いてベニトアイト相からテトラジャーマネート (tetragermanate: BaGe₄O₉) 相への転移が確認 され、発光強度は著しく減少した。

ベニトアイトと同形の天然鉱物のであるバジ

ライト (BaZrSi₃O₉) とパブスタイト (BaSnSi₃ O₉)もUV光励起により室温発光を示す^{11,12}。 またベニトアイトと異なり、これら鉱物は固相 反応法による合成が可能である。上記鉱物の ZrO₆ および SnO₆ 八面体サイトへ Ti⁴⁺を置換し た多結晶体を合成し光物性を調査した結果, UV 励起により 430-440 nm 付近にピークを有する 強い青色発光が確認された(図4)。特にバジ ライト相のBaZr_{0.99}Ti_{0.01}Si₃O₉においては70% を超える内部量子収率が得られ、これは報告さ れているベニトアイト族の中で最も高い値であ る¹³⁾。さらに置換量 x=0.005-0.03 の範囲に おいて, UV 光停止後に青色発光が持続する残 光(蓄光)特性を見出した^{14,15)}。現行の SrAl₂O₄ 系蓄光体には希土類イオンが包含されている が、このベニトアイト族結晶の発光・残光メカ ニズムを解明することは今後の希土類フリー蓄

図4 (a)合成バジライト相 (BaZr_{1-x}Ti,Si₃O₉) とパブ スタイト相 (BaSn_{1-y}Ti,Si₃O₉) の発光スペクト ル (x=y=0.01) およびそれら内部量子収率の 組成依存性。図中の●と△はそれぞれバジライ ト相とパブスタイト相に対応する。発光スペク トルの励起はおよそ 4.77 eV (260 nm)。UV 光 照射下 (254 nm) における合成バジライト相x = 0.01 の写真も併せて示す (写真中の数値は色 度座標)。(b) 自然光 (上) および UV 照射停 止後(下)の合成粉末試料。

光体開発において重要な意味を持つと考えられ る。

4. TiO₅ ピラミッドを有する結晶相

ベニトアイト以外のBaO-TiO₂-SiO₂系の天 然鉱物としてフレスノイト(Ba₂TiSi₂O₈)が存 在する。この鉱物の特徴的な構造として,頂点 に短いTi-O 結合を有するピラミッド型TiO₅ が挙げられる¹⁶⁾。フレスノイト構造はこれら TiO₅ユニットがc軸方向に整列することで大 きな自発分極を誘起することか(図5a)ら, フレスノイト族結晶は優れた圧電性や非線形光 学特性を示し、特に同形結晶である Ba₂TiGe₂O₈ が析出した表面結晶化ガラスから LiNbO₃ 級の 高い二次光非線形性が確認されている^{17,18)}。ピ ラミッド型 TiO5の一つ一つは孤立ユニットと して見なすことが可能であり、この天然鉱物に おいても室温で発光を呈する (図2下)。著者 らはフレスノイトの量論組成ガラスが高い核形 成能を有することに着目し19,結晶化ガラス法 によるフレスノイトの合成を試みた。その結 果. フレスノイト単相が析出した透明ナノ結晶 化ガラスの作製に成功し、QスイッチYAG レーザーを照射すると第二高調波発生 (SHG) に相当する高強度の緑色発光(532 nm)が観 測された(図5b)。さらにUV光照射下にお いて明瞭な青白色発光を呈した^{20, 21)}。この発光 の起源もベニトアイトと同様のエネルギー遷移 (³T₁→¹A₁)によるものと推察される。フレス ノイト構造ではないが TiO₅ ユニットを持つ Cs₂TiP₂O₈相からもSHGと室温発光の両方が 確認されているが、その SHG 活性は非常に小 さい²²⁾。このことからも高い光非線形性と発光 特性を兼備するフレスノイト結晶は、フォトニ クス応用の面から極めて有用な材料であると言 える。またベニトアイトやフレスノイトにおけ る高い消光温度の原因であるが、これはTi-O ユニットの連結による d 軌道の重なりが無いも しくは少ないため、孤立ユニット中の localized exciton のエネルギー回遊が阻害されるためと 解釈できる。

バナジウムイオン (V⁴⁺) はイオン半径が Ti⁴⁺ と近く, ピラミッド型 VO₅ ユニットを有する 天然鉱物が存在することが知られている。その 中で鈴木石 (BaVSi₂O₇) は孤立した鏡面対称 の VO₅ ペアを有しており (図 6), このような ユニークな配位構造から新奇光機能性の発現が 期待される。そこで鈴木石型 BaTiSi₂O₇ の合成 および発光特性についても検討した。BaTiSi₂ O₇ 組成において固相反応法による合成を試み た結果, 1160 ℃ 以上で鈴木石に類似した XRD パターンが得られた。この BaTiSi₂O₇ 相の拡散

図5 (a) フレスノイトの結晶構造。(b) フレスノイトナノ結晶化ガラスからの SHG (上) お よび青白色発光 (下)。写真のナノ結晶化試料はフレスノイトの量論組成ガラスを 770℃ で1時間熱処理することで得られた。

図6 (a)鈴木石の結晶構造。(b) 鈴木石型 BaTiSi₂Or の光学特性。UV 光照射下 (312 nm) における 合成した BaTiSi₂Or 相の写真も併せて示す (写 真中の数値は色度座標)。

反射スペクトルを測定したところ,光学バンド ギャップ付近に Ti-O ユニットの酸素欠陥に由 来するショルダーが観測された(図 6)。また 発光スペクトルにおいて 580 nm に極大を持つ ブロードなバンドが検出され,UV 光照射下で のオレンジ発光を視認した²³⁾。チタン酸塩結晶 における室温オレンジ発光はこの BaTiSi₂O₇ 相 が初めてであり,発光寿命などの結果からこの 発光は TiO₅ ペア構造とそれら酸素欠陥の協奏 的効果によるものと結論付けている²⁰⁾。

5. おわりに

遷移金属イオンや欠陥導入により配位多面体 を修飾することで,無機材料へ多彩な発光特性 を賦与することが可能である²⁵⁻²⁷⁾。しかしなが ら,配位多面体と光物性発現との関連について の統一的理解は未だ途上段階にあり,本研究に おける新規物質探索とその光物性評価によるア プローチは学術的意義を有するものと考えてい る。また最近では多成分系ガラスの無秩序/不 均一構造を利用した配位多面体修飾の可能性も 報告されており,結晶化や組成自由度などガラ スの特質を生かした発光材料創製も確立されつ つある²⁸⁻³⁰。これらは白色 LED や太陽電池セ ルの高効率化への応用も試みられており³¹⁻³³, 今後は希土類フリー発光体が持つ環境・エネル ギー分野への展開が期待される。

謝辞

本研究の一部は,東京理科大学の曽我公平准 教授および小西智也研究員(現阿南高専准教 授),東北大学藤原研究室の岩崎謙一郎氏に協 力を賜った。また本稿での結晶構造はVESTA により描画されている³⁴⁾。

参考文献

- Y. Kanazawa and M. Kamitani, J. Alloys Comp. 408 -412, 1339 (2006).
- 2) J. Yu et al., Chem. Mater. 15, 2169 (2006).
- 3) 余野ら, 固体物理 41, 187 (2006).
- 4) Y. Takahashi et al., J. Ceram. Soc. Jpn. 114, 313 (2006).
- 5) D. Kan et al., Nat. Mater. 4, 816 (2005).
- G. D. Louderback, Univ. Calif. Bull. Dept. Geol. 5, 149 (1907).
- 7) B. M. Laurs et al., Gem. Gemol. 33, 166 (1997).
- 8) M. Gaft et al., Phys. Chem. Miner. 31, 365 (2004).
- 9) Y. Takahashi et al., J. Ceram. Soc. Jpn. 116, 1143 (2008).
- 10) F. Dachille and R. Roy, Am. J. Sci. 258, 225 (1960).
- 11) B. R. Young et al., Miner. Mag. 42, 35 (1978).
- 12) E. B. Gross et al., Amer. Miner. 50, 1164 (1965).
- 13) K. Iwasaki et al., Opt. Express 17, 18054 (2009).
- 14) Y. Takahashi et al., J. Ceram. Soc. Jpn. 116, 1104 (2008).

- 15) K. Iwasaki et al., Key Eng. Mater. 445, 221 (2010).
- 16) P. B. Moore and J. Louisnathan, Science 156, 1361 (1967).
- 17) Y. Takahashi et al., Appl. Phys. Lett. 81, 223 (2002).
- 18) Y. Takahashi et al., J. Appl. Phys. 95, 3503 (2004).
- 19) A. A. Cabral et al., J. Non-Cryst. Solids 343, 85 (2004).
- 20) Y. Takahashi et al., Appl. Phys. Lett. 86, 091110 (2005).
- 21) Y. Takahashi et al., J. Ceram. Soc. Jpn. 113, 419 (2005).
- 22) M. Wiegel and G. Blasse, Eur. J. Solid State Inorg. Chem. 30, 837 (1993).
- 23) Y. Takahashi et al., Appl. Phys. Lett. 88, 151903 (2006).
- 24) Y. Takahashi et al., J. Ceram. Soc. Jpn. 116, 1104 (2008).
- 25) T. Uchino and D. Okutsu, Phys. Rev. Lett. 101, 117401 (2008).
- 26) X. Meng et al., J. Ceram. Soc. Jpn. 116, 1147 (2008).
- 27) M. L. Moreira et al., Chem. Phys. Lett. 473, 293 (2009).
- 28) Y. Takahashi et al., Appl. Phys. Lett. 97, 071906 (2010).
- 29) H. Masai et al., Appl. Phys. Express 3, 082102 (2010).
- 30) Y. Takahashi et al., Appl. Phys. Lett. 98, 221907 (2011).
- 31) Y. Takahashi et al., Opt. Mater. Express 1, 372 (2011).
- 32) H. Masai et al., J. Ceram. Soc. Jpn. 119, 726 (2011).
- 33) Y. Takahashi et al., Funct. Mater. Lett. (in press).
- 34) K. Momna and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).