特 集 シンメトリーとガラス

バナジン酸塩結晶及びガラスの構造 :不思議な構造多様性

岡山大学 大学院自然科学研究科

早川 聡·尾坂 明義

Structure of Vanadate Crystals and Glasses : Diversity and Strangeness

Satoshi Hayakawa, Akiyoshi Osaka

Graduate School of Natural Science and Technology Okayama University

1. はじめに

遷移金属酸化物の一つである五酸化バナジウム(V₂O₅)は、化学工業では石油の脱硫触媒や、 硫酸製造の過程で用いられる二酸化硫黄の酸化 触媒としてシリカなどの触媒担体に固定(担 持)された形で使用されている。

V₂O₅の融点は 674 ℃であり,多成分系のバ ナジン酸塩ガラスは,アルカリ金属酸化物,ア ルカリ土類金属酸化物,酸化亜鉛,酸化鉛,酸 化ホウ素,五酸化リン,酸化テルル等と共に溶 融急冷すれば,簡単に作製できる¹⁾²⁾。バナジン 酸塩ガラスは軟化点が低く,ガラス,セラミッ クス,金属などで構成される部品の接着・封着 材料,電極材料,固体電解質,各種センサなど 幅広い分野での応用が期待される。V₂O₅を還 元性雰囲気下で加熱あるいは溶融すると,バナ

〒700-8530 岡山県岡山市北区津島中 3-1-1 TEL 086-251-8213 FAX 086-251-8263 E-mail: satoshi@okayama-u. ac. jp ジウムイオンは V^{5+} から V^{4+} や V^{3+} などの低い 原子価に変化する。例えば、バナジウムを多量 に含む V_2O_5 -P $_2O_5$ 系ガラスは、 V_2O_5 とリン酸二 水素アンモニウム (NH₄H₂PO₄)を還元性雰囲 気下で溶融し、得られた融液を急冷することに より作製され、バナジウムの 3 d 軌道に一個の 電子を持つ V^{4+} から、3 d 軌道に電子を持たな い V^{5+} への電子のホッピングに基づくガラスネ ットワーク(不規則網目構造)を伝導パスとす る電子伝導性の酸化物ガラス半導体である²。

本稿では、上記のバナジン酸塩の結晶及びガ ラス中のバナデート (バナジン酸アニオン)の 構造単位 (短距離秩序)と結合様式に着目した 研究報告の例を紹介する。

各種バナジン酸塩の結晶構造中に見 られる構造単位(短距離秩序)と結合 様式

いくつかのバナジン酸塩の結晶構造の特徴 (表1)から³⁻⁶⁾,バナジウム原子周囲の酸素原 子の配位数は,2.2 Å 以内を第一配位圏とする

バナジン酸塩	構造単位	平均 V-O 距離/Å	バナジン酸グループ
$Mg_3(VO_4)_2$	VO ₄	1.73	VO4 ³⁻
$Sr_3(VO_4)_2$	VO_4	1.706	VO4 ³⁻
$Zn_3(VO_4)_2$	VO_4	1.72	VO4 ³⁻
$\mathrm{Sr}_2\mathrm{V}_2\mathrm{O}_7$	VO_4	1.73	$V_2O_7^{4-}$
$\mathrm{Ba_2V_2O_7}$	VO_4	1.72	$V_2O_7^{4-}$
$Zn_2V_2O_7$	VO_4	1.72	$V_2O_7^{4-}$
$Pb_2V_2O_7\\$	VO_4	1.72	$V_2O_7^{4-}$
LiVO ₃	VO_4	1.72	(VO ₃) _n -chain
α -NaVO ₃	VO_4	1.73	(VO ₃) _n -chain
β-NaVO ₃	VO ₅	1.83	$(V_2O_8)_n$ -zigzag chain
$Mg(VO_3)_2$	VO ₅	1.83	$(V_2O_8)_n$ -zigzag chain
Ca(VO ₃) ₂	VO ₅	1.82	$(V_2O_8)_n$ -zigzag chain
Ba(VO ₃) ₂	VO_4	1.78, 1.79	(VO ₃) _n -chain
$Zn(VO_3)_2$	VO ₅	1.84	$(V_2O_8)_n$ -zigzag chain
$Pb(VO_3)_2(I)$	VO ₅	1.84	$(V_2O_8)_n$ -zigzag chain
$Pb(VO_3)_2$ (II)	VO ₅	1.80	$(V_2O_8)_n$ -zigzag chain
$Pb(VO_3)_2$ (III)	VO_4	1.56, 1.71	(VO ₃) _n -chain

表1 バナジン酸塩結晶の構造単位と平均 V-O 距離及びバナジン酸グループ³⁻⁶⁾

と4配位と5配位の二つがある。酸素配位多面 体を構造単位とした場合、オルトバナジン酸塩 では孤立型 VO₄四面体 (VO₄³⁻)、ピロバナジン 酸塩では二つの VO₄四面体が頂点共有した複 合型 (V₂O₇⁴⁻)、メタバナジン酸塩では VO₄ 四 面体が頂点共有した一次元的な鎖状構造とな り、これらは同じく+5価の原子価のリン酸塩 系と類似であるが、VO₅が稜共有した V₂O₈ ジ グザグ鎖などは、構造単位も含めて、他の網目 形成系には存在しないもので連結様式に多様性 が見られる。平均 V-O 距離は4配位では1.72 Å で5配位では 1.83 Å である。

PbO-V₂O₅系の状態図 (図 1)⁷によるとメタ バナジン酸鉛 {Pb(VO₃)₂} は存在しない。50 mol %PbO 付 近 の 組 成 で は V₂O₅ と 2 PbO・V₂O₅ (Pb₂V₂O₇)の共融混合物が 475 °C に共融点(共 晶点)を有している。一般的な常識では、共晶 組成は過冷却状態になりやすくガラス形成能が 大きいとされているので⁸⁾,共晶組成がガラス

化範囲にあることは不思議ではない。共融点は V₂O₅の融点よりも 200 ℃ 程度も低くなり,そ れよりも十分に高温(650 ℃ 以上)条件で液

22

相不混和を起こさず均一な融液をつくり,冷却 の途中で結晶化や分相が起こらないように急冷 するとガラス化する。融液の冷却時には結晶成 長速度が最大の温度を通り,さらに温度が低下 した時点で結晶核形成速度が最大の温度を通過 する。この中間の温度領域では結晶核形成と結 晶成長の両方が起こるため,ゆっくりと冷却 (徐冷)すると結晶化する。Jordan ら⁹が PbO・ V₂O₅の融液をゆっくりと冷却することによっ てメタバナジン酸鉛 [Pb(VO₃)₂]の結晶を作製

図2 メタバナジン酸鉛の結晶多形

して、その結晶構造を決定し、さらに Calestani ら¹⁰⁻¹²が急冷の際に使用する材料の熱伝 導度の違いを利用して融液の冷却速度を調節す ることによって、二種類のメタバナジン酸鉛の 結晶を作製して、それらの結晶構造を決定し た。これまでにメタバナジン酸鉛の結晶構造に は I 型、III 型、III 型の三つの多形が確認され ている。(図 2)

PbO-V₂O₅系バナジン酸塩ガラスの 構造中に見られる構造単位と結合様式

PbO-V₂O₅系バナジン酸塩ガラスはPbOと V₂O₅を原料とする混合粉末を800~1200 °C で 溶融して得られた均一な融液を急冷することに よって作製される。本系のガラスの構造に関す る研究としては、中性子回折法¹³, X線回折 法¹⁴⁾, X線散乱法²⁰⁾,赤外分光法^{6,15,16)}, ラマン 分光法, 固体 NMR 分光法⁶などの研究報告が ある。

Wright ら¹³は 41 PbO・59 V₂O₅(mol%) ガ ラスを中性子回折法で構造解析して,五酸化バ ナジウムの結晶構造中に見られるような VO₅ 四角錐のシート間隔(4.37 Å)を持たず,Pb (VO₃)₂(I)の結晶構造中に見られるような VO₆ 八面体(Vから2.73 Å まで第一配位圏とした 場合)の連結鎖も存在せず,歪んだ VO₅ 三方 両錐/四角錐が連結していること,また鉛原子 の相関が見えないことを明らかにし,このこと から,鉛原子はガラスネットワーク構造中の穴 (hole)にランダムに分布していると予想して いる。

Fares ら¹⁴はメタバナジン酸鉛 [Pb(VO₃)₂] ガ ラスを X 線回折法で調べ,動径分布関数を解 析して,バナジウム原子周囲の酸素原子の配位 数は5で,平均 V-O 距離が 1.73 Å であり, 構造既知の三つのメタバナジン酸鉛の結晶 [Pb (VO₃)₂(I), Pb(VO₃)₂(III)] のいず れとも関連がないことを明らかにしている。

一方, Dimitrov ら¹⁵⁾はローラー技術を用いた
急冷法により 0~75 mol%の PbO を含む幅広

い組成範囲の PbO-V2O5 系ガラスを作製し、赤 外分光法でガラスの分子構造を調べた。構造が 既知のバナジン酸塩結晶の赤外吸収帯と構造単 位の関係に基づき. 各種バナジン酸グループの 特徴的な振動が他の振動に依存しないという仮 定のもとにガラスネットワーク中の構造単位を 帰属すると、五酸化バナジウムの結晶構造中で 見られる孤立 V=O 基 (1020 cm⁻¹) を有する VO₅ と. Pb 原子が配位してわずかに結合距離が長 くなった V=O 基 (970-950 cm⁻¹) を有する VO₅ が存在し、PbOの含有率が0~50mol%の範囲 ではPbOが増加するに従って V=O 基 (970-950 cm⁻¹) を有する VO₅ の割合が増加し、PbO の含有量がさらに増加すると、ピロバナジン酸 (V₂O₇) グループ (860, 780 cm⁻¹) が形成し, オルトバナジン酸塩組成では孤立した VO4 四

面体 (740 cm⁻¹) が形成することを明らかにし ている。Mandal ら¹⁶⁾も赤外分光法により V_2O_5 を 50~90 mol%含む PbO- V_2O_5 系バナジン酸 塩ガラスの分子構造を調べ,孤立 V=O 基を有 する VO₅ と、Pb(VO₃)₂(I)の結晶構造中に見ら れる Pb 原子が配位してわずかに結合距離が長 くなった V=O 基を有する VO₅ の構造単位があ ることを明らかにしている。

一方,早川らはアルカリ土類金属酸化物系バ ナジン酸塩ガラスの構造を赤外分光法¹⁷⁾と固体 NMR分光法¹⁸⁾によって調べ,メタバナジン酸 塩組成(MO・V₂O₅)のガラスでは,ガラスネ ットワーク構造は主にVO₄四面体によって構 成されており,アルカリ土類金属酸化物 (MO)の含有量が減少するとVO₅三方両錐の 構造単位の割合が増加することを明らかにして いる。

Morikawa ら¹⁹は 750 ℃ の V₂O₅ 融 体 の X 線 散乱に基づく動径分布関数から,平均 V-O 距 離が 1.75 Å の VO4 四面体が構造単位であり, V-V 距離が 3.44 Å で V-O 距離の約 2 倍であ ることを明らかにして,これらの知見から一つ の V=O(非架橋酸素,二重結合性)と三つの VO4 四面体が頂点共有している P₂O₅ 型構造モ デル (branched VO₄ 四面体)を提案している。

Mosset ら²⁰⁾は超急冷法 (スプラット冷却法) により作製した非晶質 V_2O_5 薄片を X 線散乱 (LAXS) 法で構造解析して, Morikawa ら¹⁹⁾と 同じ VO_4 四面体 (branched VO_4 四面体)の構 造単位があることを明らかにしている。一方, Nabavi ら²¹⁾は同じ方法で作製した非晶質 V_2O_5 の構造を X 線吸収微細構造解析 (XAFS) 法 と⁵¹V NMR 分光法によって調べ, V⁵⁺は VO_4 と VO_5 の両方の構造単位があることを明らか にし,電子スピン共鳴 (ESR) 分光法により V⁴⁺ は五酸化バナジウムの結晶構造中に見られる VO_5 の構造単位であることを明らかにしてい る。

Hoppe 6^{22} は、双ローラー技術によって急冷 して作製した非晶質 V_2O_5 の構造を X 線回折法 によって調べ、バナジウム原子周囲の酸素原子 の配位数が 4.8 で平均 V-O 距離が 1.79 Å、V -V 距離が 3.46 Å であることを明らかにし て、VO₅ が頂点共有で連結していると予想した が、逆モンテカルロシミュレーションによっ て²³⁾、VO₅ 三方 両錐(57.6%)と VO₄ 四 面 体 (41.1%)の両方の構造単位があり、18%の末 端酸素原子(オキソ基)と三配位酸素原子と VO₆ 八面体(1.3%)がわずかにあることを提案し ている。

Seshasayee 6^{24} は、定積条件下での分子動 力学法によって V_2O_5 ガラスの構造をシミュ レーションして、頂点共有した VO_4 四面体、 VO_5 正方錐、 VO_6 八面体があり、 VO_5 正方錐 の割合が 75% を占めていることを提案してい る。

上述の非晶質 V₂O₅ と同様に PbO-V₂O₅ 系バ ナジン酸塩ガラス中においても VO₄ 四面体が 構造単位として存在する可能性がある。早川ら は、PbO-V₂O₅ 系バナジン酸塩ガラスのバナジ ウム原子及び鉛原子周囲の局所構造を固体 NMR 分光法で調べ、表1に示す各種バナジン 酸塩結晶構造中の局所構造の特徴が⁵¹V 及び ²⁰⁷Pb の化学シフト及びスペクトルプロファイ ル (粉末パターンの化学シフト異方性: $\Delta\delta$, 非対称性パラメーター: η) に反映される経験 的な相関をもとにガラスネットワーク構造中の 構造単位を帰属した⁶⁾。55 PbO・45 V₂O₅ ガラ スの構造は V₂O₇⁺, (VO₃)_n-chain などの VO₄ 四 面体で主に構成され, PbO の含有率が高いほ ど VO₄ 四面体の割合が増加して VO₅ 三方両錐 の割合が減少する傾向があり,これらの知見に 基づけば下記のような平衡反応式が成り立つ。 2 Pb (VO₃)₂ {(VO₃)_n-chain} 之 Pb (VO₃)₂ {(V₂O₇ O₈)_n-zigzag chain} 之 Pb₂V₂O₇ {V₂O₇⁴ group, end group of (VO₃)_n-chain or branched VO₄group} + V₂O₅ {branched VO₄group} (1)

V₂O₅に PbO を加えた場合, Pb²⁺の電荷補償 のために V-O-V の結合が切断されて V-O-Pb という結合に変化するだけではなく、ガラス構 造中の Pb²⁺の近傍で VO₄ 四面体の一部は VO₅ 三方両錐に変化することで V-O-V の結合の切 断を抑制し、Pb²⁺と VO₅ 三方両錐の分布のし かたによっては VO₅ 三方両錐が稜共有して連 結する可能性がある。例えば、空間的に隣接す る (VO₃)_n-chain の VO₄ 四面体の一部が互いに 接近すると VO₅ 三方両錐からなる (V₂O₈)_n-zigzag chain に変化(図3)して、VO₄四面体と VO5 三方両錐の二つの配位状態が共存する。ま た. PbO はガラスネットワーク構造の形成に も寄与している可能性がある。これらの特徴を まとめると構造モデル(図4)が提案できる^{6.18}。 この構造モデルでは、branched VO4四面体や VO5 三方両錐などの構造単位には、ガラスネッ トワーク構造を三次元的に構築する役割がある

図3 (VO₃)_n-chainから(V₂O₈)_n-zigzag chainへの構 造変化

図4 バナジン酸塩ガラスの三次元構造モデル

と考えている。ただし,非晶質 V₂O₅と同様に VO₄ 四面体の構造単位の割合は溶融温度,冷却 速度などに依存して変化する可能性があり,溶 融温度や冷却方法が異なるガラスの構造を調べ た他の研究者らの結果とは必ずしも一致しな い。

4. おわりに

著者がバナジン酸塩ガラスに関する研究に取 り組んでいたのは1994年頃までだが、低融点 を特徴とする PbO-V₂O₅系バナジン酸塩ガラス の構造解析について研究背景を紹介した。環境 問題への関心が高まり、人類の持続可能な発展 を可能にする「環境にやさしい材料」の開発が 求められ、「昨日の友は今日の仇」という感じ で PbO-V₂O₅ 系バナジン酸塩ガラスの原子,分 子レベルの構造に関する研究報告は少ない。 2006 年 7 月の欧州連合 (EU) による RoHS 指 令{the restriction of the use of certain hazardous substances in electrical and electronic equipment (電気・電子機器の有害物質規制)} が施行されて、一部の例外はあるものの電気・ 電子機器への鉛,水銀,カドミウム,六価クロ ムなどの使用が禁止され、販売できなくなり、

「無鉛化」,「鉛フリー」,「鉛レス」の工業製品 が増えている。「鉛フリーはんだ」,「鉛フリー の放射線遮蔽ガラス」,釣り具の錘(おもり) が鉛フリー化など。本稿がガラス関連の研究者 にとって温故知新の糧となれば幸いである。

参考文献

- 1) H. E. Roscoe, *Phil. Trans. Roy. Soc.* 158, pp. 1–27 (1868).
- E. P. Denton, H. Rawson and J. E. Stanworth, *Nature*, 173, pp. 1030–1032 (1954).
- S. Hayakawa, T. Yoko and S. Sakka, Bull. Chem. Soc. Japan, 66, pp. 3393–3400 (1993).
- S. Hayakawa, T. Yoko and S. Sakka, J. Solid State Chem., 112, pp. 329–339 (1994).
- S. Hayakawa, T. Yoko and S. Sakka, Bull. Inst. Chem. Res. Kyoto Univ. 71, pp. 411–419 (1994).
- 6)S. Hayakawa, T. Yoko and S. Sakka, J. Non-Cryst. Solids, 183, pp. 73–84 (1995).
- R. S. Roth and T. A. Vanderah, ACerS-NIST *Phase Equilibria Diagrams, Oxides*, Vol. XIV, The American Ceramic Society INC., (2005), USA.
- 8) 太田陸夫,曽我直弘,窯業協会誌,90, pp. 531-537 (1982).
- B. D. Jordan and C. Calvo, *Can. J. Chem.* 52, pp. 2701 -2704 (1974).
- 10) G. Calestani, G. D. Andreetti, A. Montenero and M. Bettinelli, *Acta Cryst.* C 41, pp. 177–178 (1985).
- 11) G. Calestani, G. D. Andreetti, A. Montenero, M. Bet-

tinelli and J. Rebizant, Acta Cryst. C 41, pp. 179–182 (1985).

- 12) E. Baiocchi, M. Bettinelli and A. Montenero, J. Solid State Chem., 43, pp. 63–72 (1982).
- 13) A. C. Wright, C. A. Yarker, P. A. V. Johnson and R. N. Sinclair, J. Non-Cryst. Solids, 76, pp. 333-350 (1985).
- 14) V. Fares, M. Magini and A. Montenero, J. Non-Cryst. Solids, 99, pp. 404–412 (1988).
- 15) V. Dimitrov and Y. Dimitriev, J. Non-Cryst. Solids, 122, pp. 133–138 (1990).
- 16) S. Mandal and A. Ghosh, *Phys. Rev.* B 48, pp. 9388– 9393 (1993)
- 17) S. Hayakawa, T. Yoko and S. Sakka, J. Ceram. Soc. Japan, 102, pp. 522–529 (1994).
- 18) S. Hayakawa, T. Yoko and S. Sakka, J. Ceram. Soc. Japan, 102, pp. 530–536 (1994).
- 19) H. Morikawa, M. Miyake, S. -I. Iwai, K. Furukawa, and A. Revcolevschi, J. Chem. Soc. Faraday Trans. 1, 77, pp. 361–367 (1981).
- 20) A. Mosset, P. Lecante, J. Galy, and J. Livage, *Phil. Mag.* B 46, pp. 137–149 (1982).
- 21) M. Nabavi, C. Sanchez, J. Livage, *Phil. Mag.* B 63, pp. 941–943 (1991).
- 22) U. Hoppe, R. Kranold, and E. Gattef, *Solid State Commun.*, 108, pp. 71–76 (1998).
- 23) U. Hoppe, R. Kranold, Solid State Commun., 109, pp. 625–630 (1999).
- 24) M. Seshasayee, K. Muruganandam, Solid State Commun., 105, pp. 243–246 (1998).