高分解能蛍光X線分析による価数と配位数の分析

日本板硝子(株)研究開発部

酒井 千尋

Analysis of chemical valence and coordinate number by high resolution XRF

Chihiro Sakai

Nippon Sheet Glass Co., Ltd. Research and Development

1. はじめに

ガラスに含まれる元素の価数や配位数の分析 は、ガラス製造の過程における化学的な条件の 把握や開発品や製品の物理的特性の発現には非 常に重要な情報を与える。また、動径分布(Radial Distribution Function)解析のように直接 的ではないものの、ガラスのネットワーク構造 の解析に対しても重要な情報を与える。

ガラスの構造解析に対するこのような分析的 なアプローチは、オングストローム(Å)とい う非常に僅かな原子間距離の解析のために、主 としてX線を用いた解析(X線回折,X線光電 子分光分析,あるいは蛍光X線分析など)が用 いられてきた。最近では、SPring-8などの高 輝度の放射光の光源を用いた解析によって、こ れらの測定精度の向上や測定時間の短縮が図ら

〒664-8520 兵庫県伊丹市鴻池2丁目13番12号 TEL 072-781-0081 FAX 072-779-6906 E-mail:chihiro.sakai@nsg.com

れている。

このようなガラス構造の解析を行う場合に は、常に、測定されるサンプルの非破壊での分 析が重要となる。特に、近年では、種々の機能 発現のために様々な表面処理(例えば化学強化 処理など)が行われているために、ガラス内部 と表面での組成や構造の違いを把握することが 重要となっている。また、X線や電子線のエネ ルギー位置の正確な解析が必要とされるため に、測定中の真空度の維持やチャージ・アップ などの要因を可能な限り低減するためのエネル ギー補正も重要となる。

本報告では,これらの解析技術の中から,ガ ラスに含まれる元素の価数と配位数の分析に有 効であると考えられる高分解能の蛍光X線分析 装置を用いた化学状態の分析技術を紹介する。

二結晶蛍光X線分析について

作花^{11,2}は, 蛍光X線分析装置を用いて, ガラ スに含まれる元素の配位数の分析を行った。こ れらの分析に用いられた蛍光X線分析装置は,

図1 蛍光X線分析装置の比較

我々がガラスの組成分析のために日常的に用い る1枚の分光結晶を使った汎用装置である。

波長分散型の検出器を有する蛍光X線分析装 置では、図1に示されるように、サンプル表面 に照射されたX線(最近では検出感度の向上の ためにロジウム Rh 管球のX線 RhLaが用いら れる)の照射によって励起されたそれぞれの元 素の特性X線に対して、1枚の分光結晶を用い て分光させそのエネルギー(波長)と強度が測 定される。蛍光X線分析では、微量成分の検出 感度が高く(ppm オーダーの微量元素を測定 できる)、また、定量性が良いのでガラスの主 成分から微量成分の定量分析に用いられてい る。

一般的には, 蛍光X線分析ではX線照射によ る元素の軌道電子の遷移によって励起された特

性X線を用いる(例えばK_a線やL_a線など)。 図2には、軌道電子の遷移に伴って発生する特 性X線の種類を異なる電子軌道に対して示し た。ガラスのネットワーク構造を形成する元素 の結合の情報を得るためには、最外殻電子の遷 移の情報を特性X線のプロファイルのエネル ギー(波長)の化学シフトから求めることが必 要となる。しかしながら、図2に示されたエネ ルギー準位間の電子遷移と特性X線の関係から もわかるように、最外殻の軌道電子の遷移によ って主として発生する K。線やL。線のX線強度 は、Ka線やLa線の強度と比較して非常に低い (硫黄元素の例では、SK。線の強度はSK。線に 対して1/6以下である)。したがって、以下に 示す高分解能の二結晶蛍光X線分析法による化 学状態分析の測定では、S/Nの高いプロファ イルを得るために K_aあるいは L_aの特性 X 線を 用いた。二結晶蛍光X線分析の測定において は、図1に示されるように、分光結晶を2枚用 いることによってエネルギー(波長)分解能を 大きく向上させた測定が可能となる。

図3は、金属コバルト(Co)のK_aのプロフ ァイルの測定結果に対して、従来の一結晶の蛍 光X線分析装置を用いて測定した結果と、2枚 の分光結晶を装着した高分解能の蛍光X線分析 装置を使用した結果を比較して示したものであ

図3 CoKaスペクトルに対する一結晶蛍光X線と二 結晶蛍光X線の測定結果の比較 (京都大学化学研究所 伊藤嘉昭先生の資料から引用した)

る。1 結晶の蛍光X線分析装置では, K_al と K_a2 をエネルギー(波長)に対して十分に分離でき ないために,半値幅の広い CoK_aのプロファイ ルとなっているが,二結晶蛍光X線分析装置を 用いることによって, K_a1 と K_a2 を明瞭に分離 できるために,それぞれのプロファイルの化学 シフトを検出することが可能となる。

二結晶蛍光X線分析による化学シ フトの測定結果

ガラスに含まれる元素の価数や配位数の分析 においては、ガラスの内部と表面での違いや添 加剤として用いられた微量成分(多くは1wt. %以下)の定量分析など、難度の高い分析が多 く、以下のそれぞれの課題をクリヤーすること は非常に重要であると考える。

- 分析中に価数や結合状態に変化を起こさ ないために非破壊で分析ができること。
- ガラス表面と内部(バルク)において, 酸化・還元状態や配位数の測定ができる こと。
- 3) 超高真空の雰囲気を用いないで測定がで きること(サンプル交換の容易さや真空 雰囲気中でのビーム照射による変化(還 元など)を避ける)。
- 4) 微量成分でも高い検出感度(高 S/N) でスペクトルを測定できること。

上記の要求に対しては、低真空雰囲気で測定 ができ、比較的簡単にサンプルのセッティング や測定条件を最適化でき、更に微量成分の検出 感度が高い蛍光X線分析を用いることが望まし いと考える。そして、これらの元素の化学シフ トを定量的に測定するために、二結晶蛍光X線 分析装置を用いることが適していると考える。

測定に用いる特性X線の選択においては,原 子間の結合に関与するのは最外殻の電子である ので,例えば硫黄(S)元素に対してはK_a,ま た,鉄(Fe)元素に対してはL_aを用いること が良いと考えるが,既に述べたように,二結晶 蛍光X線分析では検出感度の高いK_aの特性X 線を用いることとした。

これらの手法は、今までに二結晶蛍光X線分 析を報告した多くの文献(Manring et.al.³⁾, 合志・柳ヶ瀬⁴⁾, Furuya et.al.⁵⁾, 安田・垣山⁶⁾, 斉ら⁷⁾, Bai et.al.⁸⁾) で, K_aとL_aのスペクト ルが用いられていることから、解析結果の信頼 性や妥当性を検証するためにも有用であると考 える。

1)硫黄元素の価数分析(SK_a)

表1は、硫黄元素の標準サンプル(粉末硫黄 S₈(0価)、硫化鉄 FeS(-2価)、亜硫酸ナトリ ウム Na₂SO₃(+4価)、硫酸ストロンチウム SrSO₄(+6価))を用いた SK_a プロファイルの ピーク位置の変化を粉末硫黄のピーク位置 (eV)を基準にした場合で比較した結果であ る。この表から、二結晶蛍光X線分析装置を用 いてガラスに含まれる硫黄元素の価数分析が定

表1 粉末硫黄(S₈)をエネルギー標準とした場合の SK_aのケミカル・シフトの比較

		0.016		0.476
S ²⁻	inorganic	-0.216	\sim	-0.1/6
	organic	-0.007	~	-0.106
S ⁰		0		
S ⁴⁺		0.809		
S ⁶⁺	inorganic	1.195	2	1.215
	organic	0.872	~	1.042

S₈ : reference

図4 ガラスのSK_aスペクトルに対する二結晶蛍光X 線分析の結果

量的に可能であることがわかる。

図4は、試作ガラスに含まれる硫黄元素の価数分析を二結晶蛍光X線分析法によって行った結果を示したものである。図4には、粉末硫黄(0価)と硫酸カルシウム(+6価)の標準サンプルのSKaプロファイルと、2種類の試作ガラスのサンプルのSKaのプロファイルを比較して示した。また、図4には、表1に示した硫化鉄(-2価)のピーク位置も比較のために併記した。試作ガラスに対しては、酸化条件で溶融させたもの(Glass-2)に対してSKaプロファイルを標準サンプルと比較した。

測定時間はプロファイルの良好な S/N を得 るために、0.005°のステップ間隔で、各測定 点での 500 sec 計測によるために、1 サンプル で 24 時間~30 時間を要した(他の元素の測定 においても、基本的には同一の測定条件が用い られた)。測定は、10⁻¹Pa 程度の低真空度の雰 囲気内で行われ、分光結晶には Ge(111)が用 いられた。分光結晶は温度変化による Bragg 角の変化を避けるために、他の元素の測定でも 同様に測定中は常に 35℃ で保温された。

図4において、SO₃ 換算で0.2 wt. %以下の 硫黄成分を含む2種類の試作ガラスのSK。プ ロファイルには明らかに価数の異なる硫黄が存 在することがわかる。すなわち.酸化条件下で 溶融されたガラス(Glass-1)の硫黄はほとん どが+6価であるが、還元条件下で溶融された ガラス (Glass-2) の硫黄元素には明らかに-2 価(あるいは可能性は低いと思われるが0価) と+6価の硫黄が含まれていることがわかる。 さらに、図4は、SK_aプロファイルがX線の照 射面積の違いで僅かに異なり(\$35 mm と \$10 mm),板状ガラスの表面部分の測定と粉末状 態での測定で S²と S⁶⁺の割合が変化することも 示している。すなわち、このことは、ガラスの 表面と内部で硫黄元素の価数状態に違いがある 可能性も示している。

2) 鉄元素の価数分析 (FeKa)

二結晶蛍光X線分析法においては、高いS/ Nを得るための最適な分光結晶への交換と目的 の元素に対するBragg角を選択することによ って、硫黄元素以外の元素の価数分析も可能と なる。図2に示した電子のエネルギー準位間の 遷移と特性X線との関係から、鉄(Fe)の価 数分析ではFeL^aのプロファイルの変化を比較 することで価数分析が可能となることが期待で きる。しかしながら、従来からの価数分析の実 績も考慮して(福島⁹⁾)、ここではFeK^aのプロ ファイルの比較によって鉄の酸化還元状態の違 いを解析した。分光結晶には波長分解能を上げ るためにSi (220)が用いられた。

図5は、同一の試作ガラスに対してFeK。と 共にSK。のプロファイルの比較を示した図で ある。また、表2にはこれらのプロファイルの 多重ピーク分離の解析を行った結果を示した。

図5 ガラスのSKaとFeKaスペクトルに対する二結晶蛍光X線分析の結果

Sample	position eV	Fe ²⁺		Fe ³⁺			2	tin	
		position	shift	amount	position	shift	amount	χ	rauo
Glass-10	6398.523	6399.264	0.081	0.596	6398.885	-0.298	0.404	0.028	$\mathrm{Fe}^{2+}:\mathrm{Fe}^{3+}\doteqdot 3:2$
Glass-11	6398.853	6399.432	0.249	0.327	6398.954	-0.229	0.673	0.016	$\mathrm{Fe}^{2+}:\mathrm{Fe}^{3+}\doteqdot 1:2$
Glass-12	6398.861	6399.911	0.729	0.070	6399.088	-0.095	0.930	0.019	almost Fe ³⁺
Sampla	position		S ⁶⁺			S ²⁻		2	ratio
Sample	position eV	position	S ⁶⁺ shift	amount	position	S ²⁻ shift	amount	χ²	ratio
Sample Glass-10	position eV 2307.786	position 2307.670	S ⁶⁺ shift 0.893	amount 0.443	position 2306.744	S ²⁻ shift -0.032	amount 0.557	χ ² 0.341	ratio S ²⁻ : S ⁶⁺ ≒ 3 : 2
Sample Glass-10 Glass-11	position eV 2307.786 2307.414	position 2307.670 2307.787	S ⁶⁺ shift 0.893 1.010	amount 0.443 0.551	position 2306.744 2306.753	S ²⁻ shift -0.032 -0.023	amount 0.557 0.449	χ ² 0.341 0.162	ratio $S^{2-}: S^{6+} = 3:2$ $S^{2-}: S^{6+} = 2:3$

表2 試作ガラスの硫黄と鉄の価数の定量分析の結果

図5および表2に示した結果から,同一のガラ スに含まれる鉄と硫黄の価数に対しては相関が あることがわかる。このことから,鉄と硫黄の 価数は,ガラス溶融時(あるいは冷却時)の酸 化・還元状態を反映していると考えられる。

Glass-10の試作ガラスには、清澄剤として

芒硝(Na₂SO₄)が添加されていない。しかし ながら、おそらくソーダ灰の不純物と思われる 硫黄成分(SK_a)をプロファイルで確認するこ とができる(図5を参照)。このSK_aプロファ イルのS/N比は低いが、酸化状態を示すS⁶⁺成 分よりも還元状態を示すS²成分が多い結果が

図6 ガラスの CeLa スペクトルに対する二結晶蛍光X線分析の結果

得られた(表2を参照)。したがって,二結晶 蛍光X線分析においては,0.1 wt.%以下の微 量成分の価数の定量分析も十分に可能であると 考えられる。

3) セリウム元素の価数分析 (CeL_a)

図6には、ガラス中のセリウム(Ce)元素 の価数分析を行った結果を示した。セリウム元 素の価数分析では、鉄(Fe)よりもさらに外 殻電子に対する電子の遷移の情報を測定するこ とが必要となる。しかしながら、L_gプロファ イルの強度はL_gと比較して低いので十分な S/ Nを確保することが困難である。したがって、 本研究では、CeL_gに対する化学シフトを測定 することとした。また、分光結晶には Si(220) が用いられた。

CeL_aの化学シフトの解析では、ピーク位置 のエネルギーのシフトのみでは十分な解析がで きないので、図6に示されるように、半値幅 (FWHM: Full Width of Half Maximum Intensity) と基準となる酸化セリウム (CeO₂) との エネルギーのシフトとの関係を二次元的な関係 で表した。

図6に示した関係から,二結晶蛍光X線分析 によって,Ce⁴⁺とCe³⁺の価数を分離できるこ とがわかる。すなわち,酸化セリウムの試薬を 原料として用いたガラス(Glass-30)中のセリ ウム元素の価数は+4価となり,また,天然原 料からの酸化セリウムを用いた場合には,ガラ ス中のセリウム元素の価数は,ほぼ+3価 (Glass-32)あるいは+3価と+4価の共存 (Glass-31)であることが確認された。同じ試 作ガラスに対しては,同時に鉄と硫黄の価数分 析も実施された。それらの分析の結果から,上 記の現象に対しては以下のように考えられる。

セリウム成分が+4価でガラス原料として用 いられた場合には、バッチに還元剤が含まれて いなくても、バッチ反応の過程で CO₂の発生 によって、雰囲気中の酸素分圧が低下して還元 側になると考えられる。そのために、+3価の 鉄成分の大部分は+2価に変わり、さらに高温 の条件下で+4価のセリウムを+3価に還元す ると考えられる。したがって、溶融ガラス中で はセリウムの多くは+3価で存在すると考えら れる。この場合に、添加された酸化セリウム原 料中に含まれる CeO₂ の濃度が低い場合には、 ほとんど全てが+3価のセリウムに変化すると 考えられる。また、セリウム含有量が多い場合 には+3価と+4価が混在する可能性が考えら れる。 ガラスのバッチ組成に対して、ガラス中の Fe₂O₃, SO₃(硫酸塩)およびCeO₂の濃度が同 じに設定される場合において、調合原料として 用いられた酸化セリウム中の不純物の含有量や 酸化還元の状態が異なる場合には、溶融された バッチ重量と溶融過程の熱履歴が同じ場合で も、作製されたガラス中のセリウム元素の価数 が異なると考えられる。

図6に示した3つの試作ガラス(Glass-30, Glass-31 およびGlass-32)に使用された酸化 セリウム原料は異なる。Glass-30ではCeO₂試 薬が使用され、Glass-31とGlass-32では天然 鉱産物から精製された原料が用いられた。ま た、Glass-31の酸化セリウム原料は不純物を 多く含むことがわかっている。

CeO₂ 試薬を使用したガラス (Glass-30) で

はS²の含有量が多く、また、Ce³⁺の多い酸化 セリウムを使用したガラス(Glass-32)ではS²⁺ が相対的に少なくなっている。したがって、ガ ラス中の硫黄の酸化・還元状態の変化もセリウ ムの価数の変化に影響を与えたと考える。今後 さらに詳細な考察が必要であるが、二結晶蛍光 X線分析によって、ガラスの酸化と還元の状態 に影響を与える原料と含まれる元素の価数分析 に対しては、共存する他の元素との関係から溶 融過程における酸化・還元状態の変化を考察す る手がかりを得ることができると考えられる。

マグネシウム(MgK_a)とアルミニウム (AIK_a)元素の化学シフト

福島⁹によると、蛍光X線のプロファイルの エネルギーシフトは、複数の価数を持つ元素に

図7 ガラスの Alkaと MgKaスペクトルに対する二結晶蛍光X線分析の結果

対しては,酸化と還元の状態を示す価数変化を 検出することができる。また,価数が変化しな い元素(例えばマグネシウム,アルミニウム, あるいはケイ素)に対しては,酸素原子との配 位数を検出できるとことが示されている。

作 花¹は、Na₂O-Al₂O₃-SiO₂ あるいはLi₂O-Al₂O₃-SiO₂ ガラスに対して、一結晶の従来型の 蛍光X線分析法によって、AlK_aのプロファイ ルの化学シフトを測定した。その結果、Al³⁺の 酸素原子の配位数は4であり、配位数が6の Al³⁺はほとんど存在しないことを確認した。ま た、作花²¹は、GeO₂を60モル%と70モル%含 むNa₂O-Al₂O₃-GeO₂ ガラスに対して、AlK_{al,2} 蛍光X線の化学シフトを測定した。その結果、 Al³⁺の酸素原子の配位数は全てのガラス中にお いて4配位であることがわかった。

図7(左図)には、二結晶蛍光X線分析装置 を用いて種々のガラスサンプルのAlK_aのプロ ファイルを測定した結果を示した。本研究で は、Al³⁺の4配位の標準サンプルとして燐酸ア ルミニウム(AlPO₄)を使用し、また、6配位 の標準サンプルとしてはコランダム(*α*-Al₂O₃) を用いた。二結晶蛍光X線分析における詳細な 解析結果に対しても、ガラスのAl³⁺は全ての サンプルで4配位であった。

図7(右図)には、二結晶蛍光X線分析による Na₂O-MgO-Al₂O₃-SiO₂ ガラスの MgK_aのプ ロファイルを比較した図を示す。この図から、 MgK_aのピーク位置に対しては、Glass-17 が最 も低エネルギー側に位置し、また、Glass-16 が最も高エネルギー側に位置する。Mg²⁺の6 配位の標準サンプルにはペリクレース(MgO) が用いられ、また、4 配位の標準サンプルには スピネル (Spinel)が使用された。この結果、 Glass-17 には6 配位の Mg²⁺に加えて4 配位な どの低次の配位数の Mg 元素が存在している可 能性を見出すことができた。

4. 二結晶蛍光 X 線分析の今後の展開

二結晶蛍光X線分析は、通常の一結晶蛍光X

線分析と同様の測定で波長(エネルギー)分解 能の高い特性X線のプロファイルを得ることが できる。測定時の雰囲気が超高真空を必要とし ないことや、帯電などの問題が生じにくい、あ るいは、蛍光X線分析に特徴的な微量成分の検 出感度が高いなど、測定上あるいは解析におけ る利点が多い。しかしながら、サンプルの状態 (粉末状か板状)や前処理などの正しい取り扱 いも高精度のデータ解析に対しては重要とな る。また、光電子分光分析 (XPS) や電子線マ イクロアナリシス (EPMA) などの従来の分 析手法。あるいは放射光分析におけるX線微細 吸収構造(XAFS)やX線回折法による動径分 布 (RDF) 解析や分子軌道法 (MD) シミュレー ションなども併用しながら解析することが望ま しい。これらの種々の解析技術を組みあわせな がら、ガラスのネットワーク構造の解析や元素 置換などに対する構造予測や物性評価などにも 利用できればと考えている。

今後は、ガラスの組成変化との関係も詳細に 把握しながら、非架橋酸素 (NBO) や架橋酸 素 (BO) などの分析も含め、ガラスのネット ワーク構造における元素の配位状態なども定量 的に解析できるようにしていきたいと考えてい る。

5. まとめ

分光結晶を2枚装着した二結晶蛍光X線分析 装置を用いて,ガラスに含まれる元素の価数分 析と配位数分析を行った結果,以下のことが明 らかになった。

- ガラス中の硫黄元素の価数分析は二結晶 蛍光X線分析によって定量的に測定が可能 である。
- 2) ガラス中の鉄元素の価数分析は, 波長(エ ネルギー)分解能の高いSi(220)分光結 晶を用いて定量的に分析が可能である。
- 3) セリウムの価数分析はCeL。プロファイ ルの化学シフトと半値幅(FWHM)の関 係から定量的な解析が可能となる。

- 4)価数変化のない元素(Mg, AlおよびSi) に対しては配位数の分析も可能である。ただし、ガラスに含まれるAl³⁺は全て4配位であった。また、Mg²⁺はガラスの組成変化に対して配位数が変化することが示され、組成の異なるガラスでは、6配位と4配位(低次の配位数)が確認された。
- 5) 今後,二結晶蛍光X線分析における高分 解能の解析技術を応用しながら,ガラスの ネットワーク構造における架橋-非架橋酸 素の定量分析やXPS,XAFSあるいは RDF 解析との相関を取りながら,ガラス の構造解析に寄与していきたいと考えてい る。

6. 謝辞

本研究の実施に対して,二結晶蛍光X線分析 装置を用いた高分解能の測定は京都大学化学研 究所の伊藤嘉昭准教授によって行われた。ま た,測定された蛍光X線のプロファイルの解析 は,独立行政法人の物質・材料研究機構の福島 整博士によって行われた。 日本板硝子株式会社研究開発部の長嶋廉仁様 には, ガラス中でのイオンの存在状態の解釈に 対して有益な議論を頂いた。

ここに,以上の方々に対しては心から感謝を 致します。

文献

- 作花済夫 「AIKα 蛍光X線スペクトルによるアル ミノ珪酸塩ガラス中のアルミニウムイオンの配位数 の研究」: 窯業協会誌, 85, 168-173, 1977
- 2)作花済夫 「AlKα1,2蛍光X線スペクトルによる ゲルマン酸塩,硼酸塩および燐酸塩ガラス中の Alの 配位の研究」:窯業協会誌,85,299-305,1977
- 3) W. Manring, D. Billings, A. Conroy and W. Bauer: Glass Industry, July, 374, 1967.
- 4) 合志陽一, 柳ヶ瀬健次郎: 燃協, 52, 96, 1973.
- 5) Furuya, K., Kano, Y. Kikuchi, T. and Gohshi, Y. : Microchim. Acta, 263. 1983.
- 6) 安田誠二, 垣山仁夫:分析化学, 29, 447, 1980.
- 7) 斉文啓,河合潤,福島整,飯田厚夫,古谷圭一,合 志陽一:分析化学, 36, 301, 1987.
- Y. Z. Bai, S. Fukushima and Y. Gohshi: Advances in X-ray Analysis, Vol. 28, 45, 1985.
- 9) 福島 整 「化学状態によるX線スペクトル変化の 研究」東京大学博士論文, 190 p. 2007