レーザー干渉計を用いた石英ガラス屈折率均質性の計測

(株)ニコン ガラス事業室

吉田 明子

Refractive index homogeneity measurement of silica glass by Laser interferometer

Akiko Yoshida

NIKON Corporation Glass Division

1. はじめに

半導体露光装置に用いられる石英ガラスには 高い屈折率均質性が要求される。屈折率の不均 質が結像性能に大きく影響するためである。本 稿では石英ガラスの屈折率均質性をレーザー干 渉計を用いて計測する例を紹介する。

2. レーザー干渉計の原理

ガラスの屈折率均質性を評価する手法とし て、干渉計法、シュリーレン法などが知られて いる。レーザー光源を用いるレーザー干渉計は ガラスの屈折率均質性を高精度に計測すること ができる。中でもフィゾー型干渉計は、その構 成上の特徴から屈折率均質性の高精度計測に適 している。

フィゾー型干渉計の構成例を図1に示す。フ

〒252-0328 神奈川県相模原市南区麻溝台 1-10-1 TEL 042-740-6376 FAX 042-740-6336 E-mail: Akiko. Yoshida@nikon. com

ィゾー干渉計はレーザー光源、ビームスプリッ ター.高精度に研磨された参照面(フィゾー面 ともよばれる)およびミラー面, CCD カメラ, などから構成される。フィゾー干渉計による内 部不均質の計測では、フィゾー面とミラー面と の間に被検物を配置する。被検物を透過してミ ラー面によって折り返された光と参照面で折り 返された光との干渉縞を CCD で観察する。被 検物の屈折率不均質は、干渉縞の本数や部分的 なゆらぎとして観察される。参照面以前の光路 は共通であるため、振動等の環境からのノイズ を受けにくく、被検物の不均質の高精度計測が 可能となっている。高精度計測の実現のために は、温度・振動などの周辺環境の整備は言うま でもない。また被検物を安定して保持するため の治具の最適化も欠かせない。

フィゾー型干渉計の代表的な計測方法とし て,浸液法,ポリッシュドホモ法,FT-PSI法 が挙げられる。浸液法は研削仕上がりの被検物 の表面に被検物と同じ屈折率を持つオイル(浸 液)を塗布し見かけ上透明にして光を透過させ

図1 フィゾー干渉計の構成例

図2 浸液法

て干渉縞を得る(図2)。被検物の作製が容易・ 安価である反面,塗布した浸液の厚み不均等や 経時変化などが計測誤差となり,高精度化には 限界がある。浸液の均一な塗布には熟練が必要 であるため,作業者による差も生じやすい。

ポリッシュドホモ法および FT-PSI 法では被 検物は研磨されていることが必須である。浸液 の影響を排除できることから計測の安定性およ び高精度化が期待できる。ポリッシュドホモ法 は被検物をクサビ状に高精度研磨し、ミラー 面,被検物の表面,裏面,被検物を透過したミ ラー面,と参照面との4種の干渉縞をそれぞれ 独立して取得する (図3)。得られた4つの波 面から被検物の屈折率均質性を算出することが できる。

被検物にクサビ角をつけて高精度研磨する必 要があり、サンプル作製費用が高いという難点 がある。また各波面を測定する場合の光軸中心 の位置決め制御が必要であり、測定には習熟を 要する。FT-PSI 法も被検物を高精度に研磨す る必要があるが平行平板で良く、サンプル作製 の難易度はそれほど高くない。FT-PSI 法では ポリッシュドホモ法で計測する4波面に加え て、被検物の表裏面および被検物裏面とミラー 面の干渉波面の6波面を同時計測し、フーリエ 変換を用いて波面分離を行った後、被検物の屈 折率均質性を算出する(図4))。被検物の屈折 率均質性と同時に表裏面の反射波面精度も計測 できる点がユニークである。FT-PSI 法による 計測は,浸液を用いないこと,多波面同時計測 のため光軸中心の位置決め制御が不要なこと. から、上述の2つの測定方法に比べて高精度計 測が可能である。いずれの計測手法を選択する かは、要求されている精度とコストとの兼ね合 いによる。

Sample

図4 FT-PSI法

3. 石英ガラスの屈折率均質性と干渉計 による計測の例

石英ガラスの屈折率分布は. 主に製法に起因 する組成分布.および構造に起因する密度揺ら ぎによって形成される。組成分布の主な要因と して、 製法上石英ガラスの構造内に取り込まれ る OH 基, 塩素などが挙げられる。一方構造起 因の密度揺らぎは、熱履歴に大きく影響され る2)3)。現在では、合成条件の最適化(温度分布 制御など)4,および二次的な熱処理であるア ニール条件の最適化により屈折率均質性の高い 石英ガラスを得ることができるようになっ た⁵⁾。投影レンズに用いられる石英ガラスの屈 折率均質性をフィゾー干渉計を用いて測定した 例を示す(図5)。波面が高い部分は屈折率が 低く、波面が低い部分は屈折率が高いことを示 している。製法の最適化による成分濃度分布の 抑制および精密アニールにより ø 300 mm 全面 にわたり高均質を達成できた。

さらに近年では、拡大成形処理により高均質 を保ったまま直径 650 mm 以上の石英ガラスを 得ることができるようになった。図6はφ600 mmにおいて屈折率均質性2ppmの例であ る。測定はFT-PSI法にて行った。このような 大口径品の計測の際には波面合成という技術が 用いられる。一般に干渉計の計測はフィゾー面 の口径よりも小さい径の被検物に限られるが. 波面合成技術を適用することにより, 干渉計の フィゾー面よりも大きな口径をもつ被検物も計 測できる。被検物全面をカバーできるように複 数個所で重なり合う透過波面を計測する。重ね あわせ部のチルト補正を行いながら各データを 接続して複数波面を一つの波面に合成し、大口 径被検物の内部均質性データを得ることができ る。

石英ガラスにエキシマレーザーのような高出 力のレーザーを照射することにより,屈折率均 質性の変化が誘起される。屈折率が上昇する場 合をコンパクション,屈折率が低下する場合を

NEW GLASS Vol. 29 No. 112 2014

図5 投影レンズの干渉計測定例

コンパクションの測定例

図6 大口径品の干渉計測定例

レアファクションの測定例

図7 コンパクション、レアファクションの例

レアファクションと呼ぶ。これらの現象は,エ キシマレーザーの照射による石英ガラスの Si-O-Si 結合の開裂および再結合が原因と考えら れている。コンパクション・レアファクション の計測例を図7に示す。2D 図は,石英ガラス サンプルの中心に円形のエキシマレーザーを照 射し,照射部のみ屈折率が変化していることを 示しており,断面図は照射部の透過波面の位相 差を示している。コンパクションでは照射部の 波面が未照射の部分に比べて遅れている,つま り屈折率が上昇していることがわかる。一方レ アファクションでは照射部の波面が未照射の部 分に比べて進んでいる,つまり屈折率が低下し ていることがわかる。屈折率変化の抑制には溶 存水素分子濃度,OH基濃度の最適化,基本構 造の安定化が有効と考えられている⁰。コンパ クション・レアファクションといった現象は, 半導体露光装置においては結像性能の劣化に直

図8 コンパクション、レアファクションの波長依存 性の測定例

結するため,露光装置の光学設計において,こ れらの現象があらかじめ高精度に計測され石英 ガラスの寿命予測が正確になされていることが 重要である。

最後にコンパクション・レアファクションの 波長依存性について述べる。現在入手できる一 般的な干渉計の光源は He-Ne レーザー(波長 632.8 nm)である。しかし,実際には石英ガ ラスは紫外から赤外までさまざまな波長領域に おいて光学部品として使用される。半導体露光 装置に用いられる光源は ArF (193.4 nm), KrF (248.3 nm)などの真空紫外線である。 そこで,使用波長におけるコンパクション・レ アファクションを実測し,波長依存性を検証し た例を紹介したい。石英ガラスの密度変化に伴 う屈折率変化の波長分散は、ローレンツローレ ンス式の微分式により,以下のように記述され る。

 $\Delta n/n = (\Delta \rho/\rho) \cdot (1+\Omega) \cdot (n^2-1) \cdot (n^2+2)/6 n^2$ $\rho: 密度$

Ω:相対密度変化と相対分極率変化の比率:

 $\Omega = -0.19 \pm 0.04$

n@632.8 nm = 1.4570, n@248.3 nm

= 1. 5084, n@193. 4 nm = 1. 5601

石英ガラスにArFエキシマレーザーを照射 し、コンパクション・レアファクションを誘起 した。これらのサンプルをHe-Neレーザー、 ArFエキシマレーザー,KrFエキシマレー ザーを光源とする干渉計で計測した結果を図8 に示す。屈折率変動の波長依存性はローレンツ ローレンスの式の微分式に従うことが実測によ り確かめられた。

4. おわりに

石英ガラスの屈折率均質性をレーザー干渉計 によって計測する例を紹介した。露光装置の高 精細化に伴い、Zernikeフィッティングなど高 次の対称性を含む解析が要求されるようにな り、干渉計の計測もさらなる高精度化が求めら れている。温度・振動・気流など測定環境の整 備や、被検物の作製精度・被検物の保持方法の 最適化、などにより一層の工夫が必要である。

参考文献

- 1) L. L. Deck, Proc. SPIE, Vol 4451 (2001), 424–431)
- 2) 非晶質シリカガラスハンドブック (1999), 110-119
- K. Saito and A. L. Ikushima, Prog. Theor. Phys. Suppl., 126 (1997), 277–280
- 4)小峯典男,中川和博,高野潤,神保宏樹,平岩弘 之,"石英ガラスの製造装置および製造方法",公開 特許公報 平 07-053226
- 5) 小峯典男,藤原誠志,神保宏樹, "石英ガラスおよびその製造方法",公開特許公報 平11-092153
- 6) 小峯典男, 平岩弘之, "紫外線照射により緻密化が 抑制された石英ガラス部材", 公開特許公報 平 9-12323