## ガラス形成酸化物融液におけるソレー効果

京都大学大学院 工学研究科 材料化学専攻

## 清水 雅弘

## Soret effect in oxide glass melts

#### **Masahiro Shimizu**

Department of Material Chemistry Graduate School of Engineering, Kyoto University

二成分系のソレー効果を説明するために,温 度勾配下での成分1の質量流束J<sub>1</sub>を表す拡散 方程式を次式に示す[6-8]。

 $J_1 = -\rho D_M \text{ grad } n_1 - \rho n_1 n_2 D_T \text{ grad } T$ (1)

ここで, 添字 1,2 は二つの拡散種を表しており,  $\rho$ :密度, n:モル分率, T:温度,  $D_M$ :相互拡散 係数,  $D_T$ :熱拡散係数, grad は勾配を表す演算 子である。右辺の第一項は,濃度勾配を駆動力 とする拡散項であり,第二項は温度勾配を駆動 力とする拡散項である。例えば,二成分均一系 に温度勾配をかけると,第二項の寄与により濃 度分布が形成される。濃度分布が形成されると, 第一項の寄与が大きくなり,濃度分布を解消す る方向に駆動力が働く。十分な時間が経つと, 両者がバランスをとって定常状態に達する。定 常状態では、上記の式(1)において  $J_1=0$ とな り、式変形することで、ソレー係数  $\sigma_{soret,1}$ の定 義式が得られる[6-8]。

$$\sigma_{\text{soret, 1}} = \frac{D_T}{D_M} = -\frac{1}{n_1 n_2} \quad \frac{\text{grad } n_1}{\text{grad } T}$$
(2)

1. ソレー効果とは

ソレー効果は,温度勾配を駆動力とした物質 の拡散現象であり,1856年に C. Ludwig[1]に よって報告され,次いで1879年に C. Soret[2] によって報告された。ソレー効果は,英語で Soret effect, Ludwig-Soret effect, Thermal diffusion, Thermodiffusion 等,様々な呼び方があ る[3]。ソレー効果は,液体の系で発見された 現象であるが,固体[4]および気体[5]の系でも 起こる現象である。

多成分からなる均一系に温度勾配をかける と、ソレー効果によって,ある成分は高温側へ 移動し,他のある成分は低温側へ移動すること で、各成分それぞれに濃度分布が形成される。 一例として、二成分系のソレー効果の概念図を 図1に示す。

 〒617-0001 京都府向日市物集町五ノ坪 2-1 グランパール 302 号
 TEL 075-383-2411 or 090-9396-8424
 FAX 075-383-2410
 E-mail: m. shimizu@curll. kuic. kyoto-u. ac. jp



図1 ソレー効果の概念図(二成分系の例)

ソレー係数によって,定常状態における高温側 と低温側での各成分の濃度差を定量化できる。 例えば,正のソレー係数は,着目している成分 1が低温側で高濃度であることを表し,その絶 対値は,成分1の低温側と高温側での濃度差の 大きさを表す。

気体におけるソレー効果では、ソレー係数を 予測する式が S. Chapman [5]によって提案さ れ、実験値とよく一致するため、既にその機構 が解明されたと言ってよいが、液体・固体では、 拡散種間の相互作用が強く、かつ複雑なため、 解明されておらず、現在でも非平衡物理学分野 における問題の1つとなっている[9]。液体・ 固体においては、重さ、大きさ、形状、結合強 度等の拡散種の性質がソレー効果にどのような 影響を及ぼすかが、明らかになっていないのが 現状である。

#### 2. ケイ酸塩融液におけるソレー効果

ケイ酸塩融液におけるソレー効果は,地球物 理学分野において,1980年代から研究が行わ れ,近年も研究されている[10-14]。ケイ酸塩 鉱物の融液,もしくはそれを模して合成したケ イ酸塩融液を用いて実験が行われた。これらの 研究で得られている重要な実験結果として,① ケイ酸塩融液においては SiO<sub>2</sub>成分が高温側へ 移動する[10,11],②同位体を含むケイ酸塩融 液では重い同位体が軽い同位体に比べてより低 温側に移動する[12-14],という2点が挙げら れる。①に関して,一例を挙げると1986年の C. E. Lesher らの論文[11]では、SiO<sub>2</sub> – TiO<sub>2</sub> – Al<sub>2</sub>O<sub>3</sub> – FeO–MnO–MgO–CaO–Na<sub>2</sub>O–K<sub>2</sub>O系 のサンプルにおいて、長さ5mmのサンプルの 両端をそれぞれ1350℃、1650℃に265時間保持 すると、SiO<sub>2</sub>の高温側における濃度が低温側よ り17 mol%高くなった、という実験結果が報告 されている。

## ガラス分野におけるソレー効果解明 の意義

産業レベルで用いられるガラス溶融タンク [15]や研究室レベルで使用されるるつぼ内で は、温度勾配が存在しており、ソレー効果によ るガラス融液組成の不均一性が問題になる可能 性がある。そのような不均一性は、製造された ガラスの屈折率の不均一や,機械的強度[16]の 低下を生じさせ得る。また近年注目されてい る、ガラスのレーザー切断[17]やレーザー融着 時[18]には、ソレー効果によって生じる構成元 素の不均一性により、レーザー照射部周辺に歪 みが残存する他,屈折率の変化による光散乱が 起こり得る。特に、ソレー効果による組成分布 形成に伴って発生する歪みに関しては、ガラス をガラス転移温度付近でアニールしても取り除 くことができない[19]。以上より、ソレー効果 はガラスの製造およびレーザー加工において避 けるべきものであり、その工学的知見は重要で あると考えられる。また、将来的には高度に均 質なガラスをつくる上で重要な知見になると考 えられる。

## 4. ガラス形成酸化物融液のソレー効果 への実験的アプローチ

筆者は、酸化物ガラス融液におけるソレー効 果に寄与する因子(イオンの重さ、大きさ、結合 強度、融液の構造など)を解明すべく研究して いる。ソレー効果の機構を解明するうえで、二 成分という単純な系で実験を行っているが、そ れは、物性値(自己拡散係数、混合のギブズエネ ルギーなど)やガラス融液構造、分子動力学計 算に用いるポテンシャル等の情報が得やすく、 ソレー効果に寄与する因子を解明しやすい、と 考えたからである。

主に2つの実験アプローチで研究を行ってき た。一つは、レーザー局所加熱によって生じる 温度勾配を利用した実験である[20,21]。もう 一つは、電気管状炉中の温度勾配を利用した実 験である[22]。レーザー照射による方法では、 ガラス内部の数十マイクロメートルの領域を局 所的に加熱することで急峻な温度勾配が得られ る。この手法の利点として、実験が簡便である こと、系が定常状態に達する時間が短いことが 挙げられる。ソレー係数が定常状態における値 の 96%[7]に到達する時間 t<sub>steady state</sub> について、S. R. de Groot[6]によって下記の式が提案されて いる。

$$t_{\text{steady state}} = \frac{L^2}{\pi D_{\text{M}}} \tag{3}$$

ここで,Lはサンプルの高温側の端と低温側 の端の間の距離である。一方,欠点は,加熱領域 が小さいため,レーザー照射中の温度分布を精 確に測定することが困難なことである。ソレー 係数を算出するためには,式(1)より,温度分布 と濃度分布の情報が同時に必要である。よって, レーザー照射による手法は各成分の移動方向を 決めるためには有効であるものの,ソレー係数 の算出に用いることは難しい。50 (mol%) CaO -50SiO<sub>2</sub> 二成分ガラスにおけるレーザー実験 の結果を図1に示す[20]。高温側と低温側では 酸化物のモル%において10 mol%程度の差が



図2 レーザー照射実験

生じていることがわかる。これまでに報告され た2成分系ガラスへのレーザー照射の実験結果 をまとめると、 $50 (mol\%)CaO - 50SiO_2[20], 30$  $(mol\%)Na_2O - 70SiO_2[21], 15 (mol\%)Na_2O - 85B_2O_3[23], 15 (mol\%)Na_2O - 85GeO_2[24], のど$ のガラスにおいても網目形成酸化物が高温側に移動しており、網目修飾酸化物は低温側に移動していることがわかった。

一方. 電気管状炉を用いた実験では. 温度分布 を熱電対で測定することができ、ソレー係数を 測定することができる。しかし、サンプルの長 さが1cm以上と長いため、定常状態に達する のに時間がかかるという欠点がある。1 cmと 10 µm を比べた時,式(3)によると定常状態に 達する時間は10°倍異なる。以上より、定常状 態に達するのに要する時間の評価は、ソレー係 数の測定において重要である。電気管状炉を用 いた実験の概略図と得られる典型的なデータ例 を図3に示す。ガラスサンプルは白金カプセル 中に封止された後、液相温度以上で熱処理され る。出発組成15(mol%)M<sub>2</sub>O-85B<sub>2</sub>O<sub>3</sub>(M=Li, Na, K)の試料では、温度勾配下での 90 時間の 熱処理後に、Li<sub>2</sub>O は高温側へ移動した一方で、 Na<sub>2</sub>O は低温側へ移動し、さらに K<sub>2</sub>O は Na<sub>2</sub>O に比べてさらに大きく低温側へ移動した[22]。 算出されたソレー係数を図中に示している。酸 化物を構成するアルカリ金属元素が周期表で下 の方へ行くほど、酸化物が低温側へ移動しやす くなるという結果であるが、アルカリ金属イオ ンのどのような性質がこのような結果を生じさ

#### NEW GLASS Vol. 32 No. 120 2017



図3 電気管状炉を用いた実験

せたかはわかっておらず,その解明は今後の課 題の一つである。

レーザーおよび電気管状炉のどちらの実験に おいても、重力下で実験を行っているため、対 流が生じ得る。対流はソレー効果によって生じ る濃度分布を乱すものである。例えば、図3で 示した電気管状炉内の温度勾配を利用した実験 では、地表に対して水平方向(すなわち、重力 に対して垂直な方向)に温度勾配が生じており、 高温側では上昇流が、低温側で下降流が発生し ていると考えられる。これまでの筆者の解析に おいては、それら対流の効果を無視している。 一方、対流の影響を低減できるシステムが考案 されている。サンプルに対して重力と平行方向 (地表に対して垂直方向)に温度勾配をかけ、



図4 分子動力学計算

鉛直上方を高温側に,鉛直下方を低温側にする ことで,対流の影響を低減するというものであ る[25]。

# 5. ガラス形成酸化物融液のソレー効果 への分子動力学計算によるアプローチ

分子動力学計算は、ソレー効果に寄与する因 子を解明するための強力な武器である。例えば、 レナードジョーンズ流体のソレー効果において は、重い・小さい・結合強度が強い拡散種がよ り低温側へ移動しやすいことを, D. Reith らは 分子動力学計算により明らかにした[26]。分子 動力学計算の実験と比較した場合の優位性は. 他のパラメーターを固定しつつ、一つのパラ メーターのみ独立に動かせることである。この ような手法はガラス形成酸化物融液にも適用で きるものである。筆者は.50(mol%)CaO-50SiO<sub>2</sub>の融液についてソレー効果の分子動力 学計算を行った。MD 計算結果例を図3に示 す。1800 K から 2200 K の温度範囲において、 CaO が低温側で高いモル分率を持ち, SiO<sub>2</sub> が高 温側で高いモル分率を持つことが示された。

### 6. おわりに

ガラス融液におけるソレー効果には、拡散種 の大きさ、重さ、結合強度、ガラス融液の構造、 等の様々な因子が関与している可能性があり、 何が支配的な因子であるかが明らかになってい ない。ガラス形成酸化物融液におけるソレー効 果の解明は、ガラスの製造・レーザー加工に対 する新しい知見となるであろう。本稿で紹介し た取り組みが、ガラス融液におけるソレー効果 の理解への一歩となることを願っている。

#### 参考文献

- C. Ludwig, Sitzungsbericht. Kaiser. Akad. Wiss. (Mathem. -Naturwiss. Cl.), Wien, 20, 539 (1856).
- [2] C. Soret, Arch. Sci. Phys. Nat., 2, 48-61 (1879).
- [3] M. A. Rahman and M. Z. Saghir, International Journal of Heat and Mass Transfer, 73, 693–705 (2014)
- [4] シュウモン著(笛木和雄,北澤宏一 共訳), 固体内 の拡散, (コロナ社, 1976)
- [5] S. Chapman and T. G. Cowling, *The Mathematical Theory of Non-uniform Gases Third Edition* (Cambridge University Press, 1970)
- [6] S. R. de Groot and P. Mazur, Non-equilibrium Thermodynamics (Dover Publications, 1984)
- [7] C. Guy and J. Schott, Applied Geochemistry, 7, 33–40 (1992)
- [8] P. Artola and B. Rousseau, J. Chem. Phys., 143, 174503 (2015).
- [9] M. Eslamian and M. Z. Saghir, J. Non-Equilib. Thermodyn., 34, 97–131 (2009).
- [10] D. Walker and S. E. DeLong, Contrib. Mineral Petrol., 79, 231–240 (1982).
- [11] C. E. Lesher and D. Walker, *Geochim. Cosmochim.* Acta, 50, 1397–1411 (1986).
- [12] F. Huang, P. Chakraborty, C. C. Lundstrom, C. Holmden, J. J. G. Glessner, S. W. Kieffer, and C. E. Lesher, *Nature*, 464, 396–400 (2010).
- [13] G. Dominguez, G. Wilkins, and M. H. Thiemens, *Nature*, 473, 70-73 (2011).
- [14] D. J. Lacks, G. Goel, C. J. Bopp, J. A. V. Orman, C.

E. Lesher, and C. C. Lundstrom, *Phys. Rev. Lett.*, 108, 065901 (2012).

- [15] H. Mase and Kenji Oda, J. Non-Cryst. Sol., 38& 39, 807–812 (1980).
- [16] 山根正之ら編, ガラス工学ハンドブック, (朝倉書 店, 2010)
- [17] 清水政二著, New glass, 23, 3-6 (2008)
- [18] I. Miyamoto, K. Cvecek, and M. Schmidt, Opt. Express, 21, 14291–14302 (2013).
- [19] M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, K. Miura, *Opt. Express*, 20, 934–940 (2012).
- [20] M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi,
  Y. Shimotsuma, K. Hirao, K. Miura, *Opt. Lett.*,
  36, 2161 2163 (2011).
- [21] M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, K. Hirao, *Applied Physics A*, 100, 1001–1005 (2010).
- [22] M. Shimizu, D. Hanakawa, M. Nishi, K. Nagashima, H. Visbal, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, *Journal of the Ceramic Society of Japan*, 124, 774–776 (2016).
- [23] Y. Liu, B. Zhu, L. Wang, J. Qiu, Y. Dai, H. Ma, Applied Physics Letters, 92, 121113, (2008)
- [24] X. Wang, M. Sakakura, Y. Liu, J. Qiu, Y. Shimotsuma, K. Hirao, K. Miura, *Chemical Physics Letters*, 511, 266-269 (2011)
- [25] J. K. Platten, Journal of Applied Mechanics, 73, 5–15 (2006).
- [26] D. Reith and F. Muller-Plathe, Journal of Chemical Physics, 112, 2436-2443 (2000)

#### 謝辞

本稿の一部は、平尾一之氏(京都大学工学研究科教 授),西正之講師(京都大学工学研究科講師),三浦清 貴氏(京都大学工学研究科教授),坂倉政明氏(京都大 学特定准教授),花川大輔氏(元京都大学工学研究科大 学院生)との共同研究の成果をまとめたものである。 研究を進める上で、田中勝久氏(京都大学工学研究科 教授),松岡純氏(滋賀県立大学工学部教授)に助言を いただいた。科学研究費補助(課題番号:16H04215, 文部科学省日本学術振興会),公益財団法人 日本板硝 子材料工学助成会,公益財団法人島津科学技術振興財 団,公益財団法人 みずほ学術振興財団より資金的な 支援を受けた。心より感謝申し上げる。