特 集 ガラスに応用可能な蛍光体-設計から応用まで-

蛍光体中の発光中心イオンにおける エネルギー準位の第一原理計算

関西学院大学大学院 理工学研究科 化学専攻 竹村 翔太.小等原 一禎

First-Principles Calculations of Energy Levels of Luminescent Ions in Phosphors

Shota Takemura, Kazuyoshi Ogasawara

Department of Chemistry, Kwansei Gakuin University

1. はじめに

蛍光体は照明やディスプレイなどに欠かせな い材料であり,近年は高演色性を有する LED 照明や,4K ディスプレイ用の蛍光体が求めら れている。蛍光体の発光特性は,発光中心とな るイオン周りの電子状態に支配されているた め,その電子状態を構造から理論的に予測する ことは新規材料探索に極めて有用であるといえ る。母体結晶に不純物として発光イオンを賦活 する蛍光体では,一般的に3d"電子系である遷 移金属イオンや4f"電子系である希土類イオン が発光イオンとして用いられる。このような電 子系の電子状態を理論的に予測するためには, 多重項効果や発光イオン周りの局所環境,希土 類イオンでは相対論効果の考慮が非常に重要で

〒 669-1337 兵庫県三田市学園 2-1 TEL 079-565-7943 FAX 079-565-7943 E-mail: ogasawara@kwansei.ac.jp ある。これまで, 第一原理配置間相互作用 (CI: Configuration Interaction) 計算プログラムであ る DVME (Discrete Variational Multi-Electron) 法¹⁾を用いて, 結晶中の遷移金属イ オンの 3d-3d 遷移や希土類イオンの 4f-4f, 4f-5d 遷移の計算が行われ, その光学特性の解析に用 いられてきた。本稿では, DVME 法を用いた 種々の光学遷移の第一原理計算例について, 電 荷移動遷移に関する最近の成果も含めて紹介す る。

2. 計算手法

DVME 法は分子軌道計算プログラムである DV-X α (Discrete Variational X α)法²⁾をベー スにした CI プログラムである。また、4 成分 Dirac ハミルトニアンを用いた相対論 DV-X α 分子軌道計算³⁾をベースにした相対論 DVME 法⁴⁾も開発されている。

CI 法では多電子の波動関数 Ψ_l を複数の電子 配置の重ね合わせで表現し,数学的にはスレー ター行列式 Φ_i の線形結合として,

$$\Psi_l = \sum_{j}^{K} W_{jl} \Phi_j, \quad \dots \qquad (1)$$

と表す。ここで, *W_{j1}*は係数, *K*はスレーター 行列式の総数である。多電子系の電子状態は, 波動方程式

 $H\Psi_l = E_l \Psi_l, \quad \dots \quad (2)$

を解くことによって得られる。ここで*H*, Ψ_l, *E*_l はそれぞれ多電子系ハミルトニアン, *l*番目 の多電子波動関数, 多重項エネルギーを表して いる。計算にはモデルクラスターを用いるが, クラスターにおける全電子,全軌道についてす べての電子配置を考慮すると膨大な計算となっ てしまうため,注目している*n*個の電子に関す るハミルトニアンとして,

$$H = \sum_{i=1}^{n} h(\mathbf{r}_i) + \sum_{i=1}^{n} \sum_{j>i}^{n} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}, \dots \dots (3)$$

を用いる。ここで \mathbf{r} は電子の座標. ρ は電子密 度である。電子の運動エネルギーTは,量子化 された運動量演算子 – $\frac{1}{9} \nabla^2$ で表されるが、相 対論 DVME 法の場合は、 $c\tilde{a}p+\tilde{\beta}c^2$ と表され、cは光速度, $\mathbf{p}=-i\nabla$ は運動量演算子, \tilde{a} , $\tilde{\beta}$ は Dirac 行列である。電子間クーロン反発は式(3) の第2項によって具体的に考慮される。式(4) の第2項は原子核と電子の間のクーロンポテン シャルであり、 Z_{μ} は原子番号、 R_{μ} は原子位置 である。第3項の $V_{0}(\mathbf{r}_{i})$ は、注目するn電子 以外の電子からのポテンシャル⁵⁾ であり、第4 項は交換相関ポテンシャルである。第5項は Madelung ポテンシャルを考慮するためにクラ スター周りに配置した点電荷からのポテンシャ ルであり、Z^{pc}は点電荷の電荷, R₄は点電荷の 位置である。スレーター行列式を基底関数とし て、このハミルトニアンの行列要素を計算し、 対角化することで、固有値として多重項エネル ギーE₁が得られ,多電子波動関数の係数 W₁₁が 固有ベクトルとして得られる。本手法では多電

子波動関数が数値的に得られるため,振動子強 度を計算することによって理論吸収スペクトル の計算も可能である。

3. *a* -Al₂O₃中の Cr³⁺ における d-d 遷移 の第一原理計算

結晶中の遷移金属イオンの光学特性は配位子 場理論によって説明され、遷移金属イオンの多 重項エネルギー準位構造を示したものとして. 田辺・菅野ダイアグラム⁶⁾がよく知られている。 遷移金属イオンの多重項はラカーパラメータ B. Cおよび結晶場分裂パラメータ / から決定 されるが、これらを求めるためには、実験的に 得られた光学スペクトルを解析しなければなら なかった。新規光学材料の理論設計には. 第一 原理による多重項エネルギーの直接的な計算が 必要であったため、小笠原らは DVME 法を開 発し, α-Al₂O₃中の Cr³⁺ における d-d 遷移の第 一原理計算を行った¹⁾。モデルクラスターとし ては、結晶構造データから Al 中心の 63 原子ク ラスターを構築し、中心の Al を Cr に置き換え たものを用いた。CI 計算には、3d³ 配置に対応 する 10C3 = 120 個のスレーター行列式を用い ており、各電子配置の重心を補正する配置依存 補正 (CDC: Configuration-Dependent Correction)¹⁾ および. 各電子配置の多重項分裂 の過大評価を補正する相関補正(CC: Correlation Correction)¹⁾も考慮している。図 1に示すように、理論計算によって求めた多重 項エネルギーは実験値⁷⁾とよく一致しており. 3回対称場による分裂も再現されている。これ によって、結晶中の遷移金属イオンにおける多 重項構造の非経験的な予測が可能となった。

4. LiYF₄ 中の Pr³⁺ における f-f 遷移の第 一原理計算

第一原理計算による結晶中希土類イオンのエ ネルギー準位の予測のためには多重項効果の他 に、スピン・軌道相互作用に代表される相対論 効果の考慮が必要である。相対論 DVME 法は

図1 理論計算によって得られた*a*-Al₂O₃中の Cr³⁺のエネルギー準位と実験的に得られたエネル ギー準位⁷¹との比較。

4成分の波動関数を用いる完全相対論計算が可 能であり、d-d 遷移、f-f 遷移、f-d 遷移や内殻励 起遷移まで統一的に適用できる。その一例とし て LiYF₄中の Pr³⁺ における f-f 遷移の第一原理 計算を紹介する。LiYF4の結晶構造データから Y中心としてFが8配位した9原子クラス ターを構築し, Y を Pr に置換した。4f² 配置に 対応する₁₄C₂ = 91 個のスレーター行列式を用 いて計算を行った。図2に理論計算によって得 られた LiYF, 中の Pr³⁺のエネルギー準位及び 実験的に得られたエネルギー準位⁸⁾を示す。理 論的な多重項エネルギーの絶対値は実験値から 過大評価される傾向にあるが. 孤立イオンの計 算から決められた Scaling factor (Pr³⁺の場合 0.746)⁹⁾を用いて補正することにより、図2に 示すように良い一致が得られ.結晶場による シュタルク分裂も再現されている。考慮する軌 道数及び配置数を増やすことで 4f-5d 遷移の計 算も可能である¹⁰⁾。

Y₃Al₅O₁₂ 中の遷移金属イオンにおけ る電荷移動遷移の第一原理計算

蛍光体の重要な性質に温度消光があり,京都 大学の上田らは、Ce³⁺:Y₃Al₂Ga₃O₁₂における温 度消光について、青色光によってCe-5d 準位に 励起された電子が伝導帯に移動する熱イオン化 が原因であることを明らかにし¹¹⁾、その機構を

図2 理論計算によって得られた LiYF₄ 中の Pr³⁺ のエネル ギー準位と実験的に得られたエネルギー準位⁸ との比較。

利用して Ce³⁺-Cr³⁺:Y₃Al₂Ga₃O₁₂ 長残光蛍光体を 開発した¹²⁾。この長残光蛍光体は賦活された Cr³⁺が電子を捕獲するトラップ準位としては たらき、そのトラップ深さが残光特性を支配し ている。そのため、"賦活されたイオンの不純物 進位のバンドギャップ中における位置の理論的 な予測"が今後の蛍光体にとって重要になって くると考えられる。バンドギャップ中の不純物 準位の位置を理論的に予測する方法の一つとし て、価電子帯上端から不純物準位への電荷移動 遷移(LMCT:Legand to Metal Charge Transfer) エネルギーから間接的に求めるものがある。し かし. 多重項効果まで考慮した電荷移動遷移の 第一原理計算は、これまで例がなかった。その ため我々は、まず配位子から金属への電子遷移 である LMCT について第一原理計算を行い. その原子番号依存性について解析を行った。 Y₃Al₅O₁₂の結晶構造データから6配位サイト の Al を中心とした7原子クラスターを構築 し, Al を種々の3価遷移金属イオン (Sc, Ti, V, Cr. Mn. Fe) に置換した。3dⁿ2p³⁶配置と 3dⁿ⁺¹2p³⁵ 配置を考慮して相対論 CI 計算を行 い、CDCには価電子帯上端の軌道から遷移金属 イオンの非占有あるいは部分占有の軌道への遷 移エネルギーを用いた。また、遷移金属イオン が置換した際の構造緩和を考慮する Shannon の結晶半径¹³⁾に基づいた格子緩和¹⁴⁾も考慮し

図3 理論計算によって得られた $Y_3Al_5O_{12}$ 中の遷移金属イオンのLMCTエネルギー(\bullet),及び実験的に得られた $Y_3Al_2Ga_3O_{12}$ 中の遷移金属イオンのVRBE¹⁵⁾ (\bullet)。Ecは $Y_3Al_2Ga_3O_{12}$ における伝導帯の下端を示す。

ている。ここでの LMCT エネルギーはラポル テ選択則を考慮し.gerade である基底状態と ungerade となる最もエネルギーが低い励起状 態の多重項エネルギーの差としている。図3に 理論計算によって得られた Y₃Al₅O₁₂ 中の3価 遷移金属イオンの LMCT エネルギーと実験的 に得られた Y₃Al₂Ga₃O₁₂ 中の2価遷移金属イオ ンの真空準位を基準とした束縛エネルギー (VRBE)¹⁵⁾ を示す。これらは Y₃Al₂Ga₃O₁₂の伝 導帯の下端 Ec を合わせて対応するように図示 されている。第一原理計算によって得られた電 荷移動遷移エネルギーは、実験データから予測 される値からは過大評価されていたものの. そ の原子番号依存性はよく一致していた。電子状 態の解析により、Crの準位がVよりも高エネ ルギー側に現れた理由は,励起された電子が e。 軌道に入るためであることがわかった。

6. まとめ

本稿では DVME 法を用いた結晶中の発光中 心イオンにおける d-d 遷移, f-f 遷移, 電荷移動 遷移の第一原理計算を紹介した。DVME 法は経 験的なパラメータを一切用いずに多重項状態を 計算できる電子状態計算法であるため, 蛍光体 における新規材料探索に極めて有用である。 a $-Al_2O_3 中 の Cr³⁺ に お け る d-d 遷 移 お よ び$ LiYF₄ 中の Pr³⁺ における f-f 遷移の第一原理計 算では、CI 計算において種々の補正を考慮する ことにより、実験的な多重項準位の再現に成功 している。Y₃Al₅O₁₂中の遷移金属イオンにおけ る LMCT の計算結果より、バンドギャップ中 における不純物準位の位置の予測も可能である ことが示された。

参考文献

- K. Ogasawara, T. Ishii, I. Tanaka and H. Adachi, *Phys. Rev. B* 61, 143 (2000).
- H. Adachi, M. Tsukada and C. Satoko, J. Phys. Soc. Jpn. 45, 875 (1978).
- A. Rosén, D. E. Ellis, H. Adachi and F. W. Averill, J. Chem. Phys., 65, 3629 (1976).
- 4) K. Ogasawara, T. Iwata, Y. Koyama, T. Ishii, I. Tanaka and H. Adachi, *Phys. Rev. B* 64, 115413 (2001).
- S. Watanabe and H. Kamimura, *Mater. Sci. Eng.* B 3, 313 (1989).
- Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 766 (1954).
- W. M. Fairbank, Jr., G. K. Klauminzer, and A. L. Schawlow, *Phys. Rev. B* 11, 60 (1975).
- M. D. Faucher, O. K. Moune, *Phys. Rev. A* 55, 4150 (1997).
- K. Ogasawara, S. Watanabe, H. Toyoshima and M. G. Brik, *Handbook on the Physics and Chemistry of Rare Earths*, 37, 1 (2007).
- K. Ogasawara, S. Watanabe, H. Toyoshima, T. Ishii, M. G. Brik, H. Ikeno and I. Tanaka, J. Solid State Chem., 178, 412 (2005).
- J. Ueda, S. Tanabe and T. Nakanishi, J. Appl. Phys. 110, 053102 (2011).
- 12) J. Ueda, K. Kuroishi and S. Tanabe, Appl. Phys. Lett. 104, 101904 (2014).
- R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).
- 14) S. Watanabe, T. Ishii, K. Fujimura and K. Ogasawara, J. Solid State Chem. 179, 2438 (2006).
- 15) J. Ueda, A. Hashimoto, S. Takemura, K. Ogasawara, P. Dorenbos and S. Tanabe, J. Lumin. 192, 371 (2017).