特集 新エネルギーとガラス

Si 系薄膜太陽電池用透明導電酸化膜付きガラス基板

旭硝子株式会社 中央研究所

神 戸 美 花

Transparent Conductive Oxide Thin Film Coated Glass Substrates for Si Based Thin Film Solar Cells

Mika Kambe

Corporate Research Center, Asahi Glass Co., Ltd.

1. はじめに

太陽電池は、半導体の光電効果を利用して、 太陽光エネルギーを直接電力へと変換する。太 陽は半永久的に輝き続け、また、半導体の光電 効果も半永久的であるため、地球に優しい、再 生可能エネルギー源として、太陽光発電が注目 されている。様々な種類の太陽電池の中でも、 薄膜シリコン系太陽電池は使用するシリコンの 量が少ないといった理由などから注目されてい る。

我々は、1980年代から、アモルファスシリ コン薄膜(a-Si:H)太陽電池用透明導電酸化 膜(TCO)付きガラス基板の開発を始め、様々 な表面形状を有するフッ素添加酸化スズ (SnO₂:F)薄膜の作製に取り組み¹⁾、「Asahi type-U」の開発に成功している²⁾。

〒221-8755 横浜市神奈川区羽沢町 1150 TEL 045-374-7162 FAX 045-374-8863 E-mail:mika-kambe@agc.co.jp 近年,薄膜シリコン太陽電池への期待が増す 中で,更なる性能向上を目的として,アモルフ ァスシリコン/微結晶シリコン薄膜のタンデム など多接合太陽電池が研究され³⁾,生産される ようになっている⁴⁾。この新たな構造の薄膜シ リコン太陽電池に適したTCOとしては, SnO₂:F薄膜のほかにも,ZnO薄膜が研究さ れ,変換効率向上の成果をあげている^{5,6,7}。

本稿では、弊社における SnO₂:F 薄膜の高 ヘイズ率化についての研究成果を紹介する。は じめに、薄膜シリコン太陽電池用基板に求めれ らる特性について紹介する。次に、作製した高 ヘイズ SnO₂:F 薄膜「type-HU」の特性につ いて述べた後、type-HU上に作製した微結晶 Si 太陽電池の特性、a-Si:H 太陽電池の特性、 アモルファス/微結晶シリコンタンデム太陽電 池の特性について紹介する。最後にこれからの 研究課題と今後の展開について述べる。

2. 薄膜シリコン太陽電池用透明導電膜 に求めらる特性

薄膜シリコン太陽電池は、何らかの基板上に 製膜されている。薄膜太陽電池はその構造と製 膜する順番から、2種類に分類することができ る。スーパーストレート型は、太陽光入射面で あるガラス板などの透光性絶縁基板上に、TCO /半導体層/裏面電極という順に製膜される。 また、サブストレート型では、絶縁基板上に裏 面電極/半導体層/TCOの順に製膜され、 TCOの上面に保護材としてカバーガラスや透 光性樹脂などが用いられる。集積化のしやすさ と、ガラス基板がそのまま保護材となるなどの 理由から、薄膜シリコン太陽電池では、スーパー ストレート型が多く利用されている。

スーパーストレート型の薄膜シリコン太陽電 池を作製する場合,そのTCOに求められる特 性は,①太陽電池の感度領域での高光透過率, ②低抵抗,③均一で光散乱が可能な表面テクス チャ,さらに、④太陽電池の窓層である p 層 との小さな接触抵抗、⑤太陽電池製膜条件での 還元雰囲気に対する化学的安定性があげられ る⁸⁰。一般に、TCOとして用いられる材料は、 In_2O_3 :Sn (ITO),SnO₂:F,ZnO,さらに、 アモルファスIn-Ga-Zn-O,Zr⁹⁰やH¹⁰⁰を添加 した In_2O_3 など多数あげられる。この中で、上 記①~⑤すべての条件を満たすのは、SnO₂:F とZnO である。

図1は、アモルファスシリコン薄膜(a-Si: H)太陽電池用TCOとして利用されている 「Asahi type-U」の表面SEM像である。Type -U表面の均一なピラミッド形状は、a-Si:H太 陽電池の開放電E Voc、曲線因子FFを低下さ せることなく、短絡電流Jscを向上させること が可能である。Jscが向上する理由として、表 面のピラミッド形状によって①TCO/a-Si:H 界面に中間屈折率層が形成され、界面反射損失 が低減し、a-Si:H層への入射光量が増加する。 ②TCO/a-Si:H界面で入射光が散乱され、a-Si:

図1 "type-U" SnO2: F 薄膜の表面 SEM 像。

H層内での光路長が増加し,光吸収が増加する ためと考えられている¹¹⁾。

単接合の a-Si:H太陽電池の光感度が波長 800 nm 程度までなのに対して,アモルファス シリコン/微結晶シリコン薄膜のタンデム太陽 電池は波長 1100 nm 程度まで光感度を有す る¹²⁾。そこで,TCO 付きガラス基板も,より 長波長領域での高光透過率化が求められる。さ らに,微結晶シリコンの光吸収機構は,アモル ファスシリコンと異なって,間接遷移型のた め,吸光係数が小さいので,微結晶シリコン層 内での光路長が伸びるような光閉じ込め性能が 求められる。光閉じ込め性能向上のためには, 散乱性能に関する特性,ヘイズ率が多接合シリ コン太陽電池の感度領域で高いことが要求され ている。

300~1100 nm という, 広い波長領域での高 光透過率と高ヘイズ率とを両立させる手段とし て, ZnO 薄膜の研究がなされてきた。ZnO 薄 膜は SnO₂:F 薄膜と比較して, 微結晶シリコ ン薄膜製膜条件などの水素による強い還元雰囲 気に対する化学的安定性が高いという利点があ る。表面に凹凸が形成された ZnO 薄膜の作製 法には大きく2種類ある。マグネトロンスパッ タで Al 添加 ZnO 薄膜などを作製し, 塩酸で エッチングする方法^{7,13}や, 低圧 CVD で作製し た B 添加 ZnO 薄膜⁵⁰は, 高光透過率と高ヘイ ズ率を両立しており, 薄膜シリコン太陽電池の 変換効率向上に寄与している。

弊社では、type-UのSnO₂:F薄膜の研究を 基に、多接合薄膜シリコン太陽電池の変換効率 向上のために、高光透過率化、化学的安定性の 向上^{14,15}、さらに、SnO₂:F薄膜の高ヘイズ率 化を課題として研究を進めてきた。

3. 高ヘイズ SnO₂: F 薄膜の作製と特性

高ヘイズ率を有する SnO₂:F 薄膜は,常圧 熱 CVD により,ソーダライムガラス基板上に 作製した。図2に,常圧熱 CVD 装置の概略を 示す。洗浄したガラス基板を搬送ベルトで運び ながら,ヒーターで加熱し,数箇所のガス吐出 口の下を通過させて,SnO₂:F 薄膜付き基板 を作製した^{16,17}。

SnO₂:F薄膜の表面形状を走査型電子顕微 鏡(SEM)で観察し,原子間力顕微鏡(AFM) で測定した。AFMデータより,高さ分布と二 乗平均(RMS)表面粗さを求めた。SnO₂:F 薄膜付きガラス基板の分光ヘイズ率を,積分球 を用いて測定した透過率(T_{total})と,積分球を 用いないで測定した直達透過率(T_{direct})から, 式「Hz=(T_{total}-T_{direct})/T_{total}を用いて求め た。また,SnO₂:F薄膜付きガラス基板の吸 収率は,分光透過率(T_{total})、反射率(R_{total})を 浸液法¹⁶⁾を用いて測定し,100-T_{total}-R_{total}から 求めた。浸液法とは,高屈折率(n=1.74)で 透明なジヨードメタン CH₂I₂液を石英基板と SnO₂:F薄膜付きガラス基板で挟んだ状態 で,分光特性を測定する方法である。

図2 常圧熱 CVD 装置の概略図。原料吐出口の数は 製膜したい層の種類や数によって増減可能。

図3に作製した高ヘイズ SnO₂:F 薄膜の表 面 SEM 像を示す¹⁸⁾。新規に開発した SnO₂:F 薄膜は,サブミクロンサイズのピラミッドで覆 われた,ミクロンサイズの丘が点在する,"ダ ブルテクスチャ (W テクスチャ)"構造を有し ている。表面のピラミッドテクスチャはシリコ ン薄膜との中間屈折率効果と短波長の光散乱と に寄与している。また,ミクロンサイズの丘は 長波長の光散乱に寄与している。弊社では, SnO₂:F 薄膜の製膜条件の制御により,サブ ミクロンサイズのピラミッドテクスチャの大き

図3 "type-HU" SnO2: F 薄膜の表面 SEM 像。¹⁸⁾

さを制御できる。さらに、ミクロンサイズの丘 の密度と高さも、製膜条件によって制御可能で ある。製膜条件の繊細な制御は、オフライン TCO 製膜という、板ガラス成形プロセスと切 り離されているが故の、製膜条件の自由度の高 さが有利に働いている。

AFM から求めた RMS 表面粗さは図 3-(a), (b), (c), (d), それぞれ, 65, 109, 122, 155 nm であり,図1に示してある type-U は 45 nm で あった。さらに、AFM から求めた高さ分布曲 線を図4に示す。Type-Uの高さ分布曲線には ピークが1つしかなく、高さ300 nm で度数分 布がゼロとなっている。このことから、ピラミ ッドテクスチャの高さは 300 nm 程度であるこ とがわかる。一方, W テクスチャ構造を有す る SnO₂: F 薄膜の高さ分布曲線にはピークが 2つある。高さ100~200 nm に存在するピーク はサブミクロンのピラミッドテクスチャを反映 しており、300~500 nm のピークは大きな丘の 高さを反映している。また、凹凸の高さは、最 も RMS 表面粗さが大きい試料で,650 nm 程 度であることがわかる。

図5に、図1・3に示した SnO₂:F 薄膜付き ガラス基板の分光へイズ率を示す。図5中(e)

図4 図1,3で示してあるSnO2:F薄膜の表面凹凸 高さ分布曲線。¹⁸⁾

で示している type-Uは, 微結晶 Si 薄膜が感 度を有する波長 800 nm 以上の長波長領域での ヘイズ率は 5% を下回っている。一方, W テ クスチャ構造を有する type-HUは, 波長 800 nm を超える長波長領域でも高いヘイズ率を示 し, 波長 1200 nm でも 50% のヘイズ率を示す 試料もある。Type-HUの分光ヘイズ率は, W テクスチャの形状を制御することにより変化さ せることができる。図6に, 浸液法で求めた各

図5 図1,3で示してあるTCO付きガラス基板の分 光ヘイズ率。¹⁸⁾

図 6 図 1,3 で示してある TCO 付きガラス基板の吸 収率。¹⁸⁾

SnO₂:F薄膜付きガラス基板の吸収率を示 す。type-HU基板は,type-Uと比較して分光 ヘイズ率も表面凹凸も増加しているかかわら ず,type-Uと同等の低い吸収を示しているこ とがわかる。浸液法は,屈折率1.74のジヨー ドメタンによって,SnO₂:F薄膜の表面テク スチャを埋めることにより,SnO₂:F薄膜の 光散乱が低減され,SnO₂:F薄膜付きガラス 基板の透過・反射率を正確に測定する方法であ る。高ヘイズ率を有する透明導電膜付きガラス 基板は,積分球を用いても散乱光を全て収集す ることが困難である。そのため,浸液法を用い ない場合,ヘイズ率が高いほど透過率が低いと いう測定誤差が生じやいので,注意を有する。

高ヘイズ SnO₂: F 薄膜付きガラス 基板への微結晶 Si 薄膜太陽電池の作 製と特性

Type-HU 基板上に微結晶 Si 薄膜太陽電池を 作製して評価した¹⁹⁾。SnO₂: F 付きガラス基板 に は, type-U (図 1) と, type-HU の 図 3 の (a), (c), (d) で示してある試料を用いた。

Type-U, type-HU, どちらの SnO₂:F 薄膜に も,耐水素プラズマ性能を付与するために,厚 さ 20 nm の Ga 添加 ZnO (GZO) 薄膜 を マグ ネトロンスパッタで製膜した。薄膜シリコン層 は全て RF プラズマ CVD で作製した。I 層製 膜時の水素希釈率 $[H_2] / [SiH_4]$ 比は 75 と した。n 層にはアモルファスシリコンを製膜し た。p/i/n/GZO/Ag 層それぞれの膜厚は,30 nm / 1 μ m/40 nm/20 nm/200 nm で あ り, セ ル面積は 0.25 mm² である。

図7に、作製した微結晶シリコン薄膜太陽電 池の分光感度を示す。分光ヘイズ率が高いほ ど、長波長感度が向上していることがわかる。 分光感度から求めた電流値は、type-Uで13.4 mA/cm²、最もヘイズ率の高いtype-HU(d) で18.1 mA/cm²と、対 type-U比35% も向上 している。しかし、最もヘイズ率の高い type-HU(d) では、短波長感度が他の基板と比較

図7 様々なTCO付きガラス基板上に作製した微結 晶 Si 薄膜太陽電池(i層=1µm)の分光感度。 図中(a)(c)(d)は図 3~6中の試料と対応してい る。

して低下している。そこで、-0.3 V の逆バイ アスを太陽電池に印加して分光感度を測定した ところ、type-HU (d) の短波長感度が type-Uと同等になった。よって、type-HU (d) 基 板上に作製した電池の短波長感度が低い原因 は、p層での光吸収が増加したためではなく、 p/i界面付近の i層の欠陥が密度が高く、キャ リアの収集が十分にされていないためと考えら れる。よって、p/i界面に欠陥を生成させない TCO の表面形状の探索が望まれる。一方では、 弊社での微結晶 Si 薄膜の製膜条件最適化が不 十分であるため、製膜条件を改善することによ り、更なる高効率化が期待できる。

高ヘイズ SnO₂: F 薄膜付きガラス 基板への a-Si: H 薄膜太陽電池の作製 と特性

これまで、type-HU 基板上に微結晶 Si 薄膜 太陽電池を作製してきたが、タンデム型薄膜シ リコン太陽電池の場合、SnO₂:F 薄膜上に製 膜されるのは、アモルファスシリコン薄膜太陽 電池である。前章の微結晶シリコン薄膜太陽電 池での検討から、SnO₂:F 薄膜の表面粗さが 大きいと、p/i 界面の欠陥密度が増加すること が示唆されているが、アモルファスシリコンの トップ層が製膜された後には、表面粗さは緩和 されていると予想できる。また、一般に柱状成 長する微結晶シリコン薄膜よりも、特定の構造 を有しないアモルファスシリコン薄膜の方が、 SnO₂:F薄膜の表面形状に対して、太陽電池 の特性はそれほど敏感で無いと期待できる。

そこで、図8に示すような (i) ピラミッド テクスチャ基板と(ii) W テクスチャ基板にア モルファスシリコン薄膜太陽電池を作製し c^{20} 。P層での $B_{2}H_{6}$ 添加量が高い場合や、p層 の膜厚が薄い場合には、W テクスチャの Voc がピラミッドテクスチャの Voc よりも低い値 を示した。しかし, B₂H₆ 濃度と p 層膜厚の最 適化を行った結果,図9に示すように,Vocと FF はピラミッドテクスチャでそれぞれ 0.82 V, 0.72, Wテクスチャで0.82 V, 0.71 と, 同等の値が得られた。また、図9から判るよう に、短絡電流値 Jsc はW テクスチャを用いて も向上しなかった。この原因としては、アモル ファスシリコン薄膜の長波長感度が小さいため に、高ヘイズ率による電流向上の効果が得られ なかったと考えられる。

次に,Wテクスチャの表面ピラミッドは, 短波長における透明導電膜/シリコン界面にお いて,中間屈折率層を形成するという,重要な 役割を果たしていることを示す²¹⁾。

図 10 に示すような,表面ピラミッドの大き さが異なる表面の type-HU 基板上に,アモル

図9 図8に示してあるTCO付きガラス基板上に作 製した a-Si:H セルの電流-電圧特性。2つの電流 -電圧特性は重なっている。²⁰⁾

ファスシリコン薄膜太陽電池を作製した。表面 のピラミッドテクスチャの大きさは試料(a)> (b)>(c)の順に小さくなっていることが図10 からわかる。図10のTCO基板上に作製した アモルファスシリコン薄膜太陽電池の分光反射 率をガラス面から測定した結果を図11に示 す。図11から,表面テクスチャが小さくなる にしたがって,セル反射率は(a)<(b)<(c)と 増加している。このとき,分光感度もセル反射 率に対応し,(a)>(b)>(c)の順に短波長感度 が減少した。なお,この分光反射率の測定には 積分球を用いていないので,散乱反射成分を測 定できていないため,特に長波長領域では小さ

図8 a-Si:H太陽電池を作製したピラミッドテクスチャ基板(i)とWテクスチャ基板(ii)の表面 SEM 像。²⁰⁾

図 10 表面ピラミッドサイズが異なる type-HU の表 面 SEM 像。²¹⁾

な反射率値を示している。

平坦な TCO 表面の方が, p 層の被覆性も良 好になり, 欠陥密度の低い Si 薄膜層が形成で きると期待できる。しかし, SnO₂:F 薄膜と シリコン薄膜との屈折率差が大きいかぎりは, SnO₂:F 薄膜と Si 層界面での反射損失を低減 するために, テクスチャ構造が必要である。

 高ヘイズ SnO₂: F 薄膜付きガラス 基板へのアモルファスシリコン/微結 晶シリコン薄膜太陽電池の作製と特性 次に、アモルファスシリコン/微結晶シリコ

 図11 表面ピラミッドサイズが異なる type-HU(図 10) 上に作製したアモルファスシリコン太陽電池 の分光反射率。²¹⁾

ンタンデム太陽電池をピラミッド形状 SnO₂: F,高ヘイズ SnO₂:F基板上に作製し,光閉じ 込め性能を評価した。光活性層の厚さはトップ のアモルファスシリコンセル,ボトムの微結晶 シリコンセルそれぞれ 0.35,1.5 μm とし,ト ップ/ボトムセルの分光感度を求めた。

図 12 は,表面構造が異なる 2 種の SnO₂:F 薄膜(W テクスチャ,ピラミッド)に作製し た,アモルファスシリコントップセル,および,

図12 表面形状が異なる2種のSnO₂:F薄膜(Wテ クスチャ,ピラミッド)に作製した,アモルファ スSi/微結晶Siタンデム太陽電池の分光感度ス ペクトル。

微結晶シリコンボトムセルそれぞれの分光感度 スペクトルである。分光感度スペクトルと AM 1.5スペクトルから計算した光電流は、ピラミ ッドテクスチャ TCO を用いた場合,トップ, ボトムセルそれぞれ 11.8, 10.4 mA/cm² であ り、出力電流はボトムセルの光電流に律則され ている。一方,高ヘイズ W テクスチャ TCO に作製した場合、光電流はトップ、ボトムセル それぞれ 11.9, 11.7 mA/cm²とバランス状態 となった。高ヘイズ SnO₂: F付きガラス基板 を用いることにより、ボトム微結晶 Si 層の薄 膜化が可能であることがわかった²²⁾。W テクス チャ TCO による光閉じ込め効果は、ピラミッ ドテクスチャ TCO でボトムの微結晶シリコン を 2.2 µm 製膜した場合と同じだけの電流値, つまり、膜厚を3分の2へと低減させられる効 果があることがわかっている。

7.まとめと今後の課題

弊社で開発している高ヘイズ SnO2: F 薄膜 付きガラス基板「type-HU」の特性と, HU 基 板上に作製した微結晶シリコンシングル、アモ ルファスシリコンシングル、さらに、アモルフ ァスシリコン/微結晶シリコンタンデム太陽電 池の特性について紹介した。Type-HU 基板の W テクスチャ表面形状は、アモルファスシリ コンだけでなく、微結晶シリコンが光感度を有 する広い波長領域で高いヘイズ率を示す。社内 評価では、1 µm の微結晶 Si シングル太陽電池 において, HU 基板の電流向上は対 U 基板比 35% を得ている。また、アモルファス Si シン グルセルによる HU 基板の評価では, Voc, FF はU基板と同等の値を示す。さらに、表面テ クスチャは TCO/Si 界面の反射損失低減のた めに重要である。最後に、アモルファスシリコ ン(350 nm)/微結晶シリコンのタンデム太 陽電池電池では、W テクスチャ基板を用いる ことにより、微結晶シリコンの膜厚を3分の2 へと低減させられることがわかった。

今後の TCO の研究課題として、多接合 Si 薄

膜太陽電池の更なる変換効率向上のために,① 更なる光散乱性能向上を実現させる TCO 形状 の探索,②Si層の膜質を低下させない TCO 表 面形状の探索,もしくはSi 製膜条件の探索, ③TCO/シリコン層界面の反射防止などがあ げられる。これらの検討は,単接合太陽電池だ けではなく,多接合太陽電池で評価することが 望まれる。一方で低コスト化のために,板ガラ ス成形工程とのオンライン TCO 製膜技術も課 題としてあげられる。さらには,2030年の薄 膜シリコン太陽電池モジュール変換効率18%²³⁾ を達成するための TCO の開発も必要である。 太陽光を無駄なく利用するために,TCO には さらに広い波長領域での高透過率化,光閉じ込 め性能が必要となってくると考えられる。

参考文献

- [1] W. Y. Kim, A. Shibata 1, Y. Kazama, M. Konagai, K. Takahashi, Jpn. JAppl. Phys. 28, 311 (1989).
- [2] K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, H. Nishimura, Reports Res. Lab Asahi Glass, 42, 129 (1992)
- [3] K. Okuda, H. Okamoto. Y. Hamakawa, Jpn. J. Appl. Phys. 22, L 605 (1983)
- [4] A. Nakajima, M. Gotoh, T. Sawada, S. Fukuda, M. Yoshimi, K. Yamamoto, T. Nomura, PVSEC-17 (Fukuoka, Japan 2007), p. 430.
- [5]S. Fay, L. Feitknecht, R. Schluchter, U. Kroll, E. Vallat–Sauvain, A. Shah, Solar Energy Materials & Solar Cells 90, 2960 (2006).
- [6] J. Bailat, D. Domine, P. Buehlmann, T. Soderstrom, F-J. Haug, V. Daudrix-Terrazzoni, N. Wyrsch, J. Steinhauser, S. Fay, C. Ballif, PVSEC-17 (Fukuoka, Japan 2007), p. 33
- [7] Oliver Kluth, Gunnar Schope, Jurgen Hupkes, Chitra Agashe, Joachim Muller, Bernd Rech, Thin Solid Films 442, 80 (2003).
- [8]R. E. I. Schropp, M. Zeman, "Amorphous and Microcystalline Silicon Solar Cells: Modeling, Materials and Device Technology", Kluwer Academic Pub (1998)
- [9] T. Koida, M. Kondo, Appl. Phys. Lett. 89, 082104 (2006)
- [10] Takashi Koida, Hiroyuki Fujiwara, and Michio Kondo, Appl. Phys. Express 1 041501 (2008)
- [11]小長井誠編,『薄膜太陽電池の基礎と応用』,オー ム社,2001

- [12] J. Meier, S. Dubail, R. Fluckiger, D. Fischer, H. Keppner, A. Shah, 1 st WCPEC (Hawaii 1994) p. 409
- [13] M. Berginski, J. Hupkes, M. Schulte, G. Schope, H. Stiebig, B. Rechb, J. Appl. Phys. 101, 074903 (2007)
- [14] T. Ikeda, K. Sato, Y. Hayashi, Y. Wakayama, K. Adachi and H. Nishimura : Sol. Energy Mater. Sol. Cells 34 (1994) 379.
- [15] M. Kambe, K. Sato, D. Kobayashi, Y. Kurokawa, S. Miyajima, M. Fukawa, N. Tanda, A. Yamada, M. Konagai, Jpn. J. Appl. Phys, 45, L 291 (2006)
- [16] M. Mizuhashi, Y. Gotoh and K. Adachi, Jpn. J. Appl. Phys., 27, 2053 (1988).
- [17] K. Sato, Y. Gotoh, Y. Hayashi, K. Adachi and H. Nishimura, Reports Res. Lab. Asahi Glass Co., Ltd. 40, 233 (1990)

- [18] N. Taneda, T. Oyama, K. Sato, PVSEC 17 (Fukuoka, Japan 2007), p. 309.
- [19] M. Kambe, K. Masumo, N. Taneda, T. Oyama, K. Sato, PVSEC-17 (Fukuoka, Japan 2007), p. 1161.
- [20] M. Kambe, A. Takahashi, N. Taneda, K. Masumo, T. Oyama, K. Sato, 33 rd IEEE–PVSC (San Diego, USA 2008).
- [21] N. Taneda, K. Masumo, M. Kambe, T. Oyama, K. Sato, 23 rd EU–PVSEC (Valencia, Spain 2008).
- [22] M. Kambe, T. Matsui, H. Sai, N. Taneda, K. Masumo, T. Ikeda, T. Oyama, M. Kondo, K. Sato, Proc. 56 th JSAP Spring, p. 945
- [23]NEDO,「2030年に向けた太陽光発電ロードマップ (PV 2030)」, http://www.nedo.go.jp/informations/other/161005_1/161005_1.html