INTERGLAD 利用例

本項には、特性データの検索、解析、特性予測および材料設計(組成最適化)、また構造データの検索、 解析の基本的かつ具体的な利用例を示します。

目次

特性データの検索と解析

- 1. 複雑な組成条件による検索 リン酸塩ガラスの熱膨張係数
- 2. 特性の三角図解析 SiO₂-TiO₂-Na₂O 系ガラスの熱膨張係数
- 3. 特性間の相関の XY プロット解析 屈折率とアッベ数
- 4. 高温特性補間機能を活用した検索 ホウケイ酸塩ガラスの高温粘度
- 5. 商品検索 FRP 用高強度ガラス繊維

特性予測(特性計算式)

6. 特定組成のガラスの特性予測(特性計算式) – ホウケイ酸塩ガラス

特性予測·組成最適化(重回帰分析)

- 7. 特性についての予測式の導出(重回帰分析)- 亜鉛ケイ酸塩ガラスの密度
- 8. 特性予測(重回帰分析) 亜鉛ケイ酸塩ガラスの密度
- 9. 組成最適化(重回帰分析) 特定密度の亜鉛ケイ酸塩ガラス
- 10. 特性予測(重回帰分析3次式) ホウケイ酸塩ガラスの屈折率
- 11. 材料設計(組成最適化)(重回帰分析1次式)
 - 特性を特定したソーダアルミノケイ酸塩ガラス

構造データの検索と解析

- 12. 組成と構造と相関調査 SiO2量と架橋酸素の割合
- 13. 構造因子間の相関調査 アルカリケイ酸塩ガラスの Q²と非架橋酸素割合

本項の記載方法について

1) 各画面で操作等が必要な箇所に下記の色別の囲みマークを記しています。

選択・設定	:	
ボタン等操作	:	
確認	:	\bigcirc

- 2) 操作方法の詳細については、各項目の冒頭に記したマニュアル参照箇所をご覧ください。
- 3) 検索結果のデータ件数およびデータ内容は INTERGLAD のバージョンにより変わりますので、本項記載 データは参考としてください。

(本例では Ver.7.1.3.2.01~7.2.1.0.05 を使用しています)

1. 複雑な組成条件による検索 - リン酸塩ガラスの熱膨張係数

リン酸塩ガラスで Al_2O_3 を 10-20 mass%含み、 Na_2O あるいは K_2O を含み、Cr の酸化物を含まない組成の 線熱膨張係数データを検索します

- w Tools Help 🖻 🖬 🔗 🍸 😝 🗳 INTERGLAD 7: Glass Prope Simple Search Detail Search tate Glass Gold-Data Glass-Forming-Reg DB Site 🕑 INTERGLAD Data (
 Server
 Local
 User Data mass%) mol% O at% Periodic Table Clear Con Shape, Feature & Proc AND AND OR OR OR OR AND First Autho Numerical E Glass ID alue Min 🛛 Value Max 1000 -Max Data AND AND AND • • AND 💌 Search Reset
- 1) 検索条件設定(特性(詳細)検索画面) → 検索実施

- 2) 検索結果(特性検索結果画面)
 - 🛎 🖬 🗟 🚐 🚕 將 片 🗮 '뇌 년 🖉 📰 🕐 😂 😂 INTERGLAD 7: Glass Property Data Source List Com 248 Com ent Unit mass% 💌 Total Number Property Number of Sources 59 Property Unit Con non 💌
 Data Bource
 Year
 Data Bource

 0720-035410
 Japanese Patent
 1896
 JO33137

 0720-037211
 Japanese Patent
 1896
 JO33137

 0520-037211
 Japanese Patent
 1896
 JO33137

 0520-037211
 Japanese Patent
 1891
 K046, n0206

 0220-042321
 J.Am. Ceram. Soc.
 1891
 K046, n0206

 0220-05143
 J.Am. Ceram. Soc.
 1895
 K010, n007

 0220-05151
 Japanese Patent
 1897
 J325231

 0720-06515
 Japanese Patent
 1897
 J325231

 0720-06512
 Japanese Patent
 1897
 J325231

 0720-06513
 Japanese Patent
 1897
 J325231

 0720-06514
 Japanese Patent
 1897
 J325231

 0720-06512
 Japanese Patent
 1897
 J325231

 0720-06512
 Japanese Patent
 1897
 J325231

 0720-06512
 Japanese Patent
 1891
 J61574

 0520-06512
 Japanese Patent
 1991
 J61574

 0 4.29 0.8 8.22 GP20-065124 GP20-065125 GP20-067932 GP20-067932 GP20-067932 GP20-087441 GP20-094218 GP20-094218 GP20-094218 GP20-102250 GP20-102251 18.00 11.00 Glass Hand Book US Patent US Patent 1985 A454497 1985 A454497 1989 A242440 15.6 Japanese Pat Japanese Pat 1989 A242440 1989 A242440 Japanese Pat

3) 検索結果の利用

🩋 INTE	RGLAD)7 : Data List o	f Prop	erty									
File To	ols He	alp											
4	💌 📽 🖬 😨 🚔 🔛 监 监 监 꾍 盟 🕐 🗑 🗯 INTERGLAD 7: Glass Property												
	Data Source List Detail Information Component												
	To	atal Number	248	Compone	nt Unit	it Unit mass% 🔻 Delete			*, -, ¹ , 7	Property			
Number of Sources 59 Pro					ty Unit	ty Unit Common 👻 Undo			livity Equation	Structure] –		
Delete	No.	Glass No.	Da	ta Source	Year	Data Source Number	AI2O3	Na20	K20 Expans	sion Coeff (Ty)			
		GC28-851484	Corning	Inc (US)		4602	14.00	0.89		5.400E-01	-		
	163	GI20-191886R	NGF's A	dditional N	2001	v.004, p.0009	10.26	4.00E		5.617E+01	=		
	70	GP20-125149	US Pate	ent	1992	A5173456	13.33		2.01	5.934E+01			
	86	GP20-125482	Europe:	an Patent	1992	A0492577	13.33		2.01	5.934E+01			
	136	GP20-154889	Japane	se Patent	1994	A040743	11.96		1.80	5.934E+01			
	74	GP20-125157	US Pate	ent	1992	A5173456	11.96		0.74	6.040E+01			
		0000000000	~							0.0105.01	-		

- ・単位のデフォルトが mol%のため、mass%を選択します。
- Na₂O、K₂Oは同一行に設定します。この場合、周期表で同時には設定できません。
- Cr₂O₃, CrO₃は周期表でのCr 選択で一度に設定できます。
- ・検索条件設定の順序は自由です。
- ・検索条件が複雑になるほど検索に時間がかかります。
- ・本例の場合、特性項目を Expansion Coeff (Typical)とし ますが、中分類(太字)の

Linear Expansion Coeff としても同じ結果となります。

- ・検索ガラス数(Total Number)に注目します。
- ・検索条件に設定した組成成分、特性データ他の表が現れ ます。
- ・必要に応じて三角図、XYプロットなどの解析を行います。

- 各項目毎にソート(並び替え)が可能です。
 [Shift]キーを押しながら表の項目ラベルをクリックします。
- ・本例では熱膨張係数で昇順にソートし、熱膨張係数が 最小のガラスを選択し、[Detail]ボタンをクリックし、 詳細データを調べます。

特性詳細画面

🤣 INTERGLA	AD 7 : Detail Dat	a of Property						X			
File Tools	Help										
B	🝸 🙋 🚺			INTER	GLAD7	: Glass	S Prope	rty			
Glass No.		State	Properties								
602	0.051404	Glass	ID	Specified	Value	Condition	h				
002	0.0011101		0510	10 Density at RT	2520.0	kg/m3		<u>]</u> +			
Composition			0540	Young's Modulus at RT	7.096E10	Pa		1			
Condition of	f Data	Glass System	1021	Expansion Coeff (0~300C)	54.0	10-7/K		1			
	Target	Alumino, Silicate	1113	T at 1E4 dPa.s (Working P)	1306.0	K		1			
		Phosnhate	1116	T at 1E7.6(7.65) dPa.s (Sof P)	1033.0	K		1-			
Component	s		1119	T at 1E13 dPa.s (Annealing P)	833.0	K		1			
1	mass%		1122	T at 1E14 dPa.s (Strain P)	792.0	K		1			
Si02	18.37 🔺	Filler / Crystal / Substrate	2018	Refract Index 589.3nm D	1.51			1			
AJ203	14.00	/ Dotio Chono	5010	Water Durability Other	3.0	1		Т			
Li2O	0.20	7 Hallo Shaye	5011	Water Durability ASTM	3.0	1		1.			
Na20	0.89		6020	Asid Resistance Other	1.0			1.			
FeO	1.29		Autho	ors							
ZnO	4.17										
Sn0	2.68 🗸	Sol-Gel Material									
			Data	Source							
Commercia	l Glass		Cornir	ng Inc (US)							
Cor	ning 4602		4602	0							
Usage		Shape & Feature	Mem	0							
-											
vvaverengtn	vavelength Selector										
			Hest	Abcorbing							
			Heats	Ansolning							
Thermal Trea	atment			1							
				Figure	CIOSE						

出典リスト画面

Eilo	Tools Help	CG LINI									
INTERGLAD 7: Data Sour											
	Data Source	Year	Data Source Number	Author	Memo	Jum of Data					
1	Phys. & Chem. Glasses	1997	Vol. 038 Page 0015	Montagne L., Palavit G.,		0					
2	J. Material Science	1997	Vol. 032 Page 5851	Donald I.W., Metcalfe B.L		70					
3	European Patent	1990	A0356746			58					
4	J. Non-Crystalline Solids	2001	Vol. 288 Page 0008	Karabulut M., Melnik E., S	Melting : in alumina cruc	.11					
5	US Patent	2004	A6784128			10					
6	Japanese Patent	2007	A290886			10					
7	Data Book of Glasses C	1991	Vol. 001 Page 0120			5					
8	Glass Phys. & ChemUS	2004	Vol. 030 Page 0425	Batyaev I.M., Leonov A.V.	Melting : in alundum cru	1					
9	US Patent	1992	A5173456			61					
10	European Patent	2003	A1275622			10					
11	Glass Technology	1991	Vol. 032 Page 0166	Peng Y.B., Day D.E.		26					
12	Japanese Patent	1994	A107428			8					
13	J. Am. Ceram. Soc.	1981	Vol. 064 Page 0206	Abe Y., Kawashima K., S		2					
14	Japanese Patent	1981	A051574			10					
15	US Patent	2003	A0153450			10					
16	US Patent	2005	A0159291			8					
17	J. Non-Crystalline Solids	1997	Vol. 222 Page 0396	Brow R.K., Tallant D.R.		28					
18	Bull. Mater. Sci.	2003	Vol. 026 Page 0715	Shah K.V., Sudarsan V.,	Melting: in Pt crucible at 8	A /					

- ・また、検索結果画面より[Data Source List]ボタンをク リックし、出典リスト画面を開き、各出典毎のガラス 数をチェックします。
- ・[Num of Data]欄が各出典毎のガラス数です。

三角図上に特性値をプロット - SiO₂-TiO₂-Na₂O 系ガラスの熱膨張係数 SiO₂-TiO₂-Na₂O を主成分とするガラスについて、組成と熱膨張係数との関係を調べます

1) 検索条件設定(特性(詳細)検索画面) → 検索実施

- ・3 成分合計を 90 mass%以上に設定します。
- ・熱膨張係数はデータが集まりやすい Expansion Coeff
 (Typical)を選択します。

2) 検索結果(特性検索結果画面)

🤡 INTE	NTERGLAD 7 : Data List of Property												
File To	ols He	lp.	~										
÷ (🐱 📽 🖩 📓 🚔 🕌 🕌 🔛 🔛 🧱 🚆 🝸 🗑 🕼 INTERGLAD 7: Glass Property												
		Data Source Li	st			Detail	In	formatio	on Compone	nt 🔶			
	(To	tal Number	200 Compone	nt Unit	mass% 💌	Delete		+, -, 1, 1	Property	/			
	Nu	mber of Sources	37 Prope	ty Unit	Common 🔻	Undo	Addit	ivity Equ	ation Structure	9			
Delete	No.	Glass No.	Data Source	Year	Data Source Number	SIO2	Na20	TIO2	Expansion Coeff (Ty (10-7/K)				
	1	GB02-006032	Handbook of Glass	1986	v.001, p.0163	67.08	15.21	17.71	8.400E+01				
	2	GB02-006033	Handbook of Glass	1986	v.001, p.0163	51.85	15.56	32.58	1.100E+02	-			
	3	GB02-006034	Handbook of Glass	1986	v.001, p.0163	49.04	20.56	30.40	1.120E+02				
	4	GB02-006035	Handbook of Glass	1986	v.001, p.0163	35.56	20.57	43.87	1.080E+02				
	5	GB02-006036	Handbook of Glass	1986	v.001, p.0163	42.29	21.44	36.27	1.160E+02				
	6	GB02-006037	Handbook of Glass	1986	v.001, p.0163	69.61	23.39	6.99	1.100E+02				
	7	GB02-006038	Handbook of Glass	1986	v.001, p.0163	50.68	22.51	26.81	1.070E+02				
	8	GB02-006039	Handbook of Glass	1986	v.001, p.0163	30.71	22.63	46.66	1.150E+02				
	9	GB02-006040	Handbook of Glass	1986	v.001, p.0163	58.00	25.69	16.31	1.180E+02				
	10	OB02-006041	Handbook of Glass	1986	v.001, p.0163	42.61	26.03	31.36	1.160E+02				
	11	GB02-006042	Handbook of Glass	1986	v.001, p.0163	53.26	26.93	19.80	1.270E+02				

3) 三角図表示

・200件が抽出されます。

- ・三角図アイコンより三角図を表示し、[Select 3 Component]ボタンをクリックし、SiO₂、TiO₂、Na₂O の3成分を選択し、合計量として 90%、表示項目とし て Expansion Coeff (Typical)を選択します。
- ・各プロット点の色により熱膨張係数の高低が一覧でき、
 三角図の中央付近の組成のガラス(赤色)が最も熱膨張
 係数が高く、右上方向に行く(SiO₂ 100%に近づく)ほど
 低くなる傾向があることがわかります。
- ・各点の出典は、各点にマウスを当てると吹出しに現われます。また、各点の詳細画面は[Detail]ボタンをクリックしてボタンをアクティブにした上で、点をクリックすることにより開き内容を確認することができます。
- ・[Glass-Forming Region]ボタンをクリックすることによ りガラス化範囲データを表示することができます。
- ・ガラス化範囲データの〇(ガラス化する)、
 ×(ガラス化しない)の間に境界線があると考えられます。
 このガラス化範囲データはあくまでも 3 成分の和が
 100%の場合のデータであるため、3 成分の和が 90%以
 上としてプロットされたこの例の場合、ガラス化範囲デ
 ータに当てはまらないデータもあるかもしれません。
- ・なお、各点がガラス化しているかどうかは詳細画面の
 State で確認できます。
- ・また、ガラス化範囲データの各点の出典もプロット点と 同様に[Detail]ボタンを使って確認することができます。

・また、画面左のスライドバーを動かすことにより、三角 図中の点の特性値範囲を変えることができます。左図の 例は熱膨張係数を 100×10^{-7} /K 以下のみとし、さらに [Zoom] ボタンにより SiO₂(100%)、Na₂O(50%)、 TiO₂(50%)の三角図としたものです。

3. 特性間の相関の XY プロット解析 一 屈折率とアッベ数 ガラスの屈折率とアッベ数の関係を調査します

1) 検索条件設定(特性(詳細)検索画面) → 検索実施

2) 検索結果(特性検索結果画面)

🥝 INTE	RGLAI	7 : Data List d	of Prope									<]
File To	ols He	alp	-									٦
*	÷ 🖬	88	4) 🗮 🔛	Karol kar	🏼 📰 🕐	6		INTERGLAD	7: Glass F	roperty	1
		Data Source L	ist				Detail	Infor	mation	Component	-	-
		tal Number	3302	Compone	ent Uni	t mot% 💌	Delete	+,	557	Property		
	Nu	mber of Sources	2281	Prope	rty Uni	Common 💌	Undo	Additivit	y Equation	Structure		
Delete	No.	Glass No.	Dat	Source	Year	Data Source Number	Refract Ir	ndex 587.6	Abbe Value (nd-1)	r(
	1	GJ05-008626	Glastech	. Ber.	1987	v.060, p.0234		1.502	6.560E+	01	-	
	2	GJ05-008627	Glastech	. Ber.	1987	v.060, p.0234		1.502	6.620E*	01	-	
	3	GJ05-008628	Glastech	. Ber.	1987	v.060, p.0234		1.503	6.652E+	01		
	4	GJ05-008629	Glastech	. Ber.	1987	v.060, p.0234		1.502	6.665E*	01		-
	5	GJ05-008630	Glastech	. Ber.	1987	v.060, p.0234		1.503	6.670E+	01		
	6	GJ05-008631	Glastech	. Ber.	1987	v.060, p.0234		1.503	6.659E*	01		
	7	GJ05-008632	Glastech	. Ber.	1987	v.060, p.0234		1.504	6.685E+	01		
	8	GJ05-008633	Glastech	. Ber.	1987	v.060, p.0234		1.504	6.722E*	01		
	9	GJ05-008634	Glastech	. Ber.	1987	v.060, p.0234		1.503	6.723E+	01		
	10	GJ01-014872	J. Ceram	. Soc. Japan	1985	v.093, p.0498		1.462	6.750E+	01		
	11	GB03-017329	Handboo	k of Glass	1987	v.00C, p.0910		1.611	5.350E+	01		
	12	GB03-017330	Handboo	k of Glass	1987	v.00C, p.0910		1.621	5.320E+	01		
	13	GB03-017331	Handboo	k of Glass	1987	v.00C, p.0910		1.637	5.230E+	01		
	14	GB03-017332	Handboo	k of Glass	1987	v.00C, p.0910		1.644	5.190E+	01		
	15	OB03-017333	Handboo	k of Glass	1987	v.00C, p.0910		1.663	5.030E+	01		
	16	GB03-017334	Handboo	k of Glass	1987	v.00C, p.0910		1.661	5.100E+	01		Ŧ

- ・ガラス状態として Glass を選択します。
- ・ガラスの屈折率には色々な波長の光によるデータがありますが、この例では代表的な He の d 線(587.6nm)のデータを抽出します。
- アッベ数の種類も複数ありますが、屈折率のNndに対応 した(nd-1)/(nF-nc)を選択します。
- ・特性数値データのみを選択する[Numerical]チェックボ ックスにチェックを入れます。
- ・出典としては、Patentを除きます。
- ・3302 件のデータが抽出されます。

 ・[XY Plot]アイコンより、XY プロットを作成します。3302
 件のデータがプロットされ登録されているガラスのア ッベ数(nd-1)/(nF-nc)と屈折率 ndの分布を一覧できます。
 ・本図ではX軸のアッベ数について、スケールをプルダウ ンメニューにより倒置形(Reverse)(左の方の数値が大き

い)としています。また、Tools/Option より、横軸、縦 軸の範囲、軸表示をわかりやすいよう変換していま す。

4. 高温特性補間機能を活用した検索 - ホウケイ酸塩ガラスの高温粘度 ホウケイ酸塩ガラスについて、700℃の粘度データを検索します

<マニュアル第3章B、C.3、第4章2、3.3参照>

- INTERGLAD 7: Glass Prope ch Detail S DB Site \mathbf{D} 🗌 Gold-Data 🔲 Glass-Forming F INTERGI AD (
 Server
 User Data 0 at% AND AND Sol-Get Co OR OR First Aut **P**EV 100 AND 💌
- 1) 検索条件設定(特性(詳細)検索画面) → 検索実施
 - ・組成はガラス系の Boro-Silicate みの入力とします。
 - ・特性については、Viscosity 700℃と設定し、 拡張検索[Extension Search]チェック ボックスにチェックを入れます。
 (本例の画面図は上記の方法に対応します)
 - ・なお、特性中分類の Viscosity(100-1000℃)(太字)を選 択することでも 700℃の粘度データを含む検索が可能と なります。この場合、100-1000℃の広い温度範囲の検索 となります。

2) 検索結果(特性検索結果画面)

🤡 INTE	INTERGLAD 7 : Data List of Property											
File To	ols H	lelp										
به (<i>*</i> 6	I 🔁 🗃 🖂	ക് 😫	₩ 🖬 (?	6		INTERGL	AD 7: Glass P	roperty
	[Data Source I	ist					Detail	Infor	mation	Component	
	\triangleleft	Total Number	868	Compor	ient Uni	t mol%	-	Delete	+,	457	Property	
	ĺ	Number of Source	s 163	Prop	erty Uni	t Common	-	Undo	Additivit	y Equation	Structure	
Delete	No.	Glass No.	Data	Source	Year	Data Sour Numbe	rce r	Viscosity (dP	(at 700C a.s.)			
	1	GJ02-000026	Glastech.	Ber.	1983	v.056, p.0125						
	2	GB04-004679	Handbook	c of Glass	1986	v.001, p.0299						=
	3	GB04-004680	Handbook	k of Glass	1986	v.001, p.0299		1	2.692E+01			
	4	GB04-004681	Handbook	c of Glass	1986	v.001, p.0299			1.0E+01			
	5	GB04-004682	Handbook	c of Glass	1986	v.001, p.0299						
	6	GB04-004683	Handbook	c of Glass	1986	v.001, p.0299						
	7	GB04-004684	Handbook	c of Glass	1986	v.001, p.0299						
	8	GJ05-005435	J. Am. Cei	ram. Soc.	1980	v.063, p.0126			2.0E+10			
	9	GJ05-010069	J. Am. Cer	ram. Soc.	1974	v.057, p.0109						
	10	GJ05-010070	J. Am. Cei	ram. Soc.	1974	v.057, p.0109						
	11	GB05-010245	Handbook	of Glass	1986	v.001, p.0243						
	12	GB05-010246	Handbook	of Glass	1986	v.001, p.0243						
	13	GB05-010247	Handbook	k of Glass	1986	v.001, p.0243						
	14	OB05-010248	Handbook	c of Glass	1986	v.001, p.0243						
	15	GB05-010249	Handbook	k of Glass	1986	v.001, p.0244			1.622E+03			
	16	GB05-010250	Handbook	of Glass	1986	v.001, p.0244						
	17	GB05-010253	Handbook	c of Glass	1986	v.001, p.0244			3.162E+03			
	18	GB05-010254	Handbook	k of Glass	1986	v.001, p.0244						
	19	GB05-010255	Handbook	c of Glass	1986	v.001, p.0244			1.514E+04			
	20	GB05-010256	Handbook	k of Glass	1986	v.001, p.0244						
	21	GB05-010257	Handbook	c of Glass	1986	v.001, p.0244			2.188E+05			
	22	GB05-010259	Handbook	k of Glass	1986	v.001, p.0244			2.754E+06			
	23	GB05-010260	Handbook	of Glass	1986	v.001, p.0244			2.692E+07			-

- ・検索結果として、高温の粘度データが登録されているすべての Boro-Silicate ガラスがリストアップされます。
 868 件。
- ・Viscosity(100-1000℃)で検索した場合には、
 100-1000℃の粘度データが1つ以上登録されたガラス
 がすべてリストアップされます。489 件。

3)	デー	タ	補間	
----	----	---	----	--

データ補間[INPOL]アイコンより開かれるデータ補間条
件設定画面で、補間条件を設定します。
本例では変数の温度単位以外はデフォルト条件のまま
とし、変数の x 軸単位については絶対温度使用[use
absolute temperature]チェックボックスにチェックを
入れ、[OK]ボタンをクリックします。

🥝 INTE	RGLA	D 7 : Data List o	of Proper	ty							
File To	pols H	elp	C			al Carolinaal Ca					
ا 🗢							2) 😝 😺	INTER	RGL/	AD 7: Glass F	roperty
		Data Source	List				Detail	Information		Component	
		Total Number	868	Compo	nent Un	it mol%i 💌	Delete	+, -, *, /		Property	
		Number of Source	s 163	Prop	erty Un	it Common 💌	Undo	Additivity Equation	n	Structure	
Delete	No.	Glass No.	Data	Source	Year	Data Source Number	Visco	sity at 700C dPa.s.)			
	1	GJ02-000026	Glastech.	Ber.	1983	v.056, p.0125		\frown			
	2	GB04-004679	Handbool	k of Glass	1986	v.001, p.0299					
	3	GB04-004680	Handbool	k of Glass	1986	v.001, p.0299		2.692E+01			
	4	GB04-004681	Handbool	k of Glass	1986	v.001, p.0299		1.0E+01			
	5	GB04-004682	Handbool	k of Glass	1986	v.001, p.0299					
	6	GB04-004683	Handbool	k of Glass	1986	v.001, p.0299		1.167E+03			
	7	GB04-004684	Handbool	k of Glass	1986	v.001, p.0299					
	8	GJ05-005435	J. Am. Ce	ram Soc.	1980	v.063, p.0126		2.0E+10			
\triangleleft	9	GJ05-010069	J. Am. Ce	ram. Soc.	1974	v.057, p.0109	\rightarrow	7.973E+07			
	10	GJ05-010070	J. Am. Ce	ram. Soc.	1974	v.057, p.0109		7.311E+09			
	11	GB05-010245	Handbool	k of Glass	1986	v.001, p.0243					
	12	GB05-010246	Handbool	k of Glass	1986	v.001, p.0243					
	13	GB05-010247	Handbool	k of Glass	1986	v.001, p.0243					
	14	GB05-010248	Handbool	k of Glass	1986	v.001, p.0243					
	15	GB05-010249	Handbool	k of Glass	1986	v.001, p.0244		1.622E+03			
	16	GB05-010250	Handbool	k of Glass	1986	v.001, p.0244		1.005E+03			
	17	GB05-010253	Handbool	k of Glass	1986	v.001, p.0244		3.162E+03			
	18	GB05-010254	Handbool	k of Glass	1986	v.001, p.0244					
	19	GB05-010255	Handbool	k of Glass	1986	v.001, p.0244		1.514E+04			
	20	GB05-010256	Handbool	k of Glass	1986	v.001, p.0244					
	21	GB05-010257	Handbool	k of Glass	1986	v.001, p.0244		2.188E+05			
	22	GB05-010259	Handbool	k of Glass	1986	v.001, p.0244		2.754E+06			
	22	GR05-010260	Handhool	k of Glace	1006	v 001 n 0244		2 6025407			

- ・内挿あるいは外挿により補間計算された 700℃のデータ が検索結果画面の表にピンク色の文字で現われます。
- ・補間データが現われないガラスは、データが一つしかな いか、デフォルト条件である 700±200℃の範囲に補間 の元となるデータが一つもないことにより、補間計算が できないガラスです。
- ・Viscosity(100-1000℃)で検索した場合には、400℃以外の温度についても補間計算がされます。
- ・補間計算した結果はファイル保存アイコンのクリックにより使用パソコンに保存できます(スタンダード版、CD フル機能版の場合に可能、インターネット版では不可)。

4) 温度-特性プロット

- ・検索結果画面で一つのガラスを選択し、温度一特性プロット(右の PLOT)アイコンをクリックすると、温度一特性プロットが表示されます。
- この XY プロットでは、補間データはピンク色の点で現われます。プロット点のスタイル、軸形式等もプルダウンメニューの指定により変えられます。
- ・粘度の場合、温度(X 軸)は逆数(1/x)、粘度(Y 軸)は対数 (logy)スケールがデフォルトとなっています。
 (Ver. 7.2.1.0.05)

5. 商品検索 - FRP 用高強度ガラス繊維

FRP 用の高強度ガラス繊維の市販名とそのガラスの詳細調査を行います

<マニュアル第3章B、第4章2参照>

1) 検索条件設定(特性(詳細)検索画面) → 検索実施

🙋 INT	ERGLA	D 7 : S	earch Pro	perty C	Jata									
File V	iew T	ools H	elp											
😅 [. 8	?	6 🖬 4	>					_			INTERG	LAD 7: GI	iss Property
Cimm	le Cear		otail Caarak	_										
Junp	16 3601		etali Search											
State	Not Spe	cified	-	Gole	I-Data 🔲 G	ass-F	ormir	a Region	Data	a			DB Site	
Comp	orition												✓ INTERGL	AD Data
Comb	(Server Local)													
🔾 m	O mass%												📃 User Dat	a
Main	Main Component Component Component %min %max													
	AND	-		OR		OR			OR			-	Snape, Feat	are & Process
	AND	•		OR		OR			OR			=	FIDE	<u> </u>
	AND	*		OR		OR			OR				AND	
	AND			OR		OR			OR				AND	
	AND			OR		OR			OR			-	Sol-Gel	
Glass	Glass System Glass System Filer / Crystal / Substrate Filer / Crystal / Sub													
Arel	, ,	-											First Author	-
Prope	rty												1	
										Numerical	Ext	ension Search	Glass ID	
			Specifie	d	1	Jnit		Value M	in	Value Max				
					Commo	n	Ŧ					^	Max Data	1000 💌
AND	-				Commo	n	Ŧ					1	man Data	1000
AND	-				Commo	n	Ŧ							
AND					Commo	n	Ŧ					-		
Data S	Source													
AND	-	、 、		(AN	D Year								\frown	
Catal	ogue))	Search	Reset
\sim	~													

- ・外観・特徴・製法欄で
 - Appearance/Shape/Linear と展開し、Fiber を選択します。
- ・用途欄で Material を展開し、Plastics, FRP を選択します。
- ・出典欄で Catalogue を選択します。

2) 検索結果(特性検索結果画面)

🧭 INT	ERGLAI) 7 : Data List o	f Property					
File T	ools He	alp						
4	2	🗟 🖨 🖾			1 🚆 🖬 🕐 (🕅 😺 INT	ERGLAD 7:	Glass Property
		Data Source Li	ist		D	etail Information	Compor	ient 📤
	T	otal Number	18 Compone	ıt Unit	mol% 💌 De	elete +, -, *, /	Prope	rty
	N	umber of Sources	18 Proper	y Unit	Common 👻 🕕	Indo Additivity Equa	tion Struct	ne
Delete	No.	Glass No.	Data Source	Year	Data Source Number	Young's Modulus at Te (GRa)	nsile Strength (MPa)	
	10	GC06-052346	Nitto Boseki (J)	1	NITTOBOT-GLASS		4.655E+03	
	4	GC06-052225	Owens Corning (US)	1989	S Glass	8.550E+01	4.585E+03	·
	3	GC03-052224	Owens Corning (US)	1989	E-Glass	7.230E+01	3.445E+03	
	6	GC03-052249	Asahi Fiber Glass (J)		E-Glass	7.252E+01	3.430E+03	
	7	GC03-052250	Asahi Fiber Glass (J)		ECR-Glass	7.223E+01	3.430E+03	
	9	GC03-052344	Nitto Boseki (J)		NITTOBOE-GLASS		3.430E+03	
	5	GC03-052226	American Biomateri	1989	C-Glass	6.890E+01	3.310E+03	1
	12	GC02-052349	Nitto Boseki (J)		NITTOBOC-GLASS		3.087E+03	
	11	GC05-052348	Nitto Boseki (J)		NITTOBOD-GLASS		2.254E+03	
	8	GC05-052262	Central Glass (J)		E-GLASSFIBER	7.252E+01	1.960E+03	
	13	GC03-052753	PPG Ind. (US)		FIBER GLASS		1.700E+03	
	2	GC03-052074	Nippon Sheet Glas		E-Glass	7.350E+01	1.470E+03	
	14	GC03-071205	Nippon Electric Gla	1989	EF	7.252E+01	1.470E+03	
	1	GC03-051554	Corning Inc (US)		E-Glass	7.400E+01		
	15	GC05-071206	Nippon Electric Gla	1989	D-40			
	16	GC03-144895	Saint-Gobain (FR)	1983	02418			
	17	GC06-144896	Saint-Gobain (FR)	1983	0320180			
	18	GC06-144897	Saint-Gobain (FR)	1985	02509			
								¥

- ・18 件のガラスがリストアップされます。また出典欄よりこれらが10社のデータであることがわかります。
- [Property]ボタンをクリックして特性選択小画面を開き ます。
- ・特性項目より、高強度ガラス繊維として重要な引張強度 (Tensile Strength)とヤング率(Young's Modulus at RT) を選択しチェックボックスにチェックを入れ、これらの データをリストに表示させます。
- ・引張強度でソートを行い、高低順に並べると、引張強度 が高いガラスがどれかがわかります(NITTOBO

特性選択小画面

3) 抽出ガラスの調査

									Property	7 : Data List d	RGLAD	🧿 INTE
										lp	ols He	File To
operty	: Glass Pro	ITERGLAD 7	IN			1 🖬	; 🚆 🛄 🛛 🕻		ఎ 😫 🚄 📃	🖹 🖨 🔄	2	4
-		Component	rmation	Info	ail	Det			rce List	Data S		
	5	Property	10.57		ste	Del	ant Unit mass% 👻	mpone	r 9 Co	Total Num		
	/	Structure	ity Equation	Additiv	do	Un	rty Unit Common 👻	Proper	ources 9	Number of		
Liquic =	Tensile Strengs (MPa)	Young's Modulus (GPa)	Density at RT	MgO	AI203	Si02	Data Source Number	Year	Data Source	Glass No.	No.	Delete
			2.5	10.00	25.00	65.00	v.001, p.0093	1986	andbook of Glass	GB06-001791	1	
			2.5	10.00	25.00	65.00	v.006, p.0444	1980	lass Phys. & Che	XJ03-032345	2	
				10.00	25.00	65.00	S-Glass		orning Inc (US)	GC06-051555	3	
	4.585E+03	8.550E+01	2.46	10.00	25.00	65.00	S-Glass	1989	wens Coming (US)	OC06-052225	4	
				10.00	25.00	65.00	v.001, p.0003	1994	undamentals inor	GB06-164715	5	
				10.00	25.00	65.00	v.209, p.0069	1997	Non-Crystalline S	GJ06-172039	6	
	4.606E+03	8.624E+01	2.49	10.00	25.00	65.00	v.001, p.0134	1991	ata Book of Glass	GB06-174772	7	
				10.00	25.00	65.00	A233942	2000	apanese Patent	GP06-205434	8	
	_		~	10.00	25.00	85.00	A2221335	2010	uropean Patent	GP06-300017	9	

4) 周辺ガラスの調査

T-Glass、S-Glass 等)。

- ・次に引張強度、ヤング率の高い S-Glass について詳しく 調べます。
- ・特性検索画面にもどり、[Commercial(User) Glass]欄で
 S/ S-Glass を選択し、組成展開[Develop]ボタンをクリックした後、検索を行います。この場合、出典欄は設定しません。
- ・本例の場合、組成展開により成分の最大値、最小値が同じ値になりますが、これはS-Glassとして登録されたガラス組成に幅がないためです。
- ・検索結果画面に9ガラス(9出典)が表示されます。組成 展開をしないで検索すると3件のみの抽出となり、組成 展開によりカタログデータ以外の雑誌等のデータも抽 出されたことがわかります。
-)・この画面で[Property]ボタンより特性選択小画面を開き、 [Select All]ボタンをクリックして[OK]ボタンをクリッ クすることにより、登録されているすべての特性データ を表示させることができます。
 - ・さらに S-Glass の周辺のガラスに関する情報を集めます。
 - ・特性検索画面で S-Glass 組成成分のそれぞれ±2%の数 値を最小値、最大値に設定します。
 - ・出典欄を NOT Patent とします。

🤡 INTE	RGLAD	7 : Data List	of Property									
File To	ols He	φ										
÷ (2	S 8 🖓) 🛔 🕌 🕌 🐱		Į [2 😺 😫				INTERGLAD	7: Glass Prope	rty
		Da	ita Source List			Detail]	Informati	ion	Component		-
		Total N	umber 32	Somponent Unit	mass	🕺 🔻 Delete		+		Property	$\overline{}$	
		Numbe	r of Sources 23	Property Unit	Com	mon 👻 Undo	Ade	litivity Eq	uation	Structure	5	
Delete	No.	Glass No.	Data	Source	Year	Data Source	802	AI2O3	MgO	Young's Modulus at	Tensile Strength	-
		GJ06-073521	Glass Phys. & Che	m-USSR	1982	v.008, p.0026	64.98	26.58	8.44	9.200E+01		-
	21	GJ06-073520	Glass Phys. & Cne	m-usak	1992	v.888, p.8826	00.09	24.90	8.01	8.100E+01		
	30	GB06-174772	Data Book of Glass	ses Composition (J)	1991	v.001, p.0134	65.00	25.00	10.00	8.624E+01	4.606E+03	
	23	0806-089932	Glass Hand Book	J)	1975	v.001, p.0219	64.36	24.82	10.31	8.575E+01		
	18	GC08-052225	Owens Coming (L	IS)	1989	S-Glass	65.00	25.00	10.00	8.550E+01	4.585E+03	
	1	GB06-001787	Handbook of Glass	s Properties	1986	v.001, p.0093	63.00	25.00	12.00			-
	2	GB06-001790	Handbook of Glass	s Properties	1986	v.001, p.0093	66.30	23.30	10.40			
	3	GB06-001791	Handbook of Glass	s Properties	1986	v.001, p.0093	65.00	25.00	10.00			
	4	0806-001792	Handbook of Glass	s Properties	1986	v.001, p.0093	65.50	25.00	9.50			-

同一出典画面

🤡 INTE	RGLAD 7 : Glass	es from a	i Data So	urce			
File To	ools Help						
8	🚔 🚑 📝 🥑	5				INTERGLAD	7: Data Source
D	ata Source :	Glass	Phys. & C	1emUSSF	र	Number of Data :	5
D	ata Source Number	: Vol. 0	08 Page O	D26 (1982)		Component Unit	mass% 💌
A	uthor :	Aslan Gorba Fertik	ova M.S., D ichev V.V., ov V.I.	orzhiev D. Bystrikov	B., Sapozhkova L.A., A.S., Petrakov V.N.,	Property Unit	SI 💌
м	iemo :					De	tail
	Glass No.	SIO2	AI2O3	MgO	Vickers Hardness ((Pa)	Density at RT (kg/m3)	Young's Modulus at R (Pa)
1	GJ06-073518	69.50	16.92	13.58		2.510E+03	9.300E+10
2	GJ06-073519	68.11	19.90	11.99	6.174E+09	2.492E+03	9.100E+10
3	GJ06-073520	66.09	24.30	9.61	5.880E+09	2.485E+03	9.100E+10
4	GJ06-073521	64.98	26.58	8.44	6.174E+09	2.495E+03	9.200E+10
5	GJ06-073522	63.58	29.56	6.85	6.370E+09	2.500E+03	9.400E+10
	4			11			Þ
					Close		

- ・32 ガラス(23 出典)のデータが抽出されます。なお、
 出典に特許も含め、条件をつけない場合には 87 件(43 出典)となります。
- ・特性検索結果画面の[Property]ボタンより引張強度とヤング率を表示し、ヤング率の値を高低順となるようソートします。これにより、S-Glassの周辺組成での機械的特性を把握することができます。
- ・また、最もヤング率の高い GJ06-073521 ガラスの同一 出典画面を表示させ(同一出典アイコンのクリックによ り)、このガラスの出典に記載されているすべてのデータ を確認することができます。

6. 特定組成のガラスの特性予測(特性計算式)- ホウケイ酸塩ガラス

ホウケイ酸塩ガラス{SiO₂ 40 %, B₂O₃ 30%, Al₂O₃ 10%, Na₂O 10%, BaO 10% (mass%)} の密度、熱膨張係 数、熱伝導率、屈折率を予測します

<マニュアル第3章D.1、第4章4.1、第6章1参照>

1) 密度の予測(特性計算式による特性予測画面)

- ・特性計算式による特性予測画面を開き、画面右の特性計算式選択欄で Density を展開し、Appen(Silicate)を選択します。
- ・左中段の Condition of Equation に、指定した計算式の 条件が現われるため、予測したい組成成分をすべて含む かどうかを確認します。
- ・[Composition]欄に必要成分を選択表示し、その数値を 入力します。成分名は[Ctrl]キーを使用することにより、 同時に複数の選択ができます。単位は mass%とします。
- [Calculate]ボタンをクリックすると[Predictive Value] 欄に予測値 2.458 g/cm³が現われます。

2) 熱膨張係数の予測

3) 熱伝導率の予測

4) 屈折率の予測

- ・同組成の他特性を予測する場合、組成欄はそのままとし、
 特性予測式のみを変えて計算することにより、次々に特
 性予測ができます。
- ・特性予測式欄のLinear Expansion Coefficientを展開し、
 Appen(Silicate)を選択します。
- ・[Calculate]ボタンをクリックすると[Predictive Value] 欄に予測値 6.862×10⁻⁶/K が現われます。

- ・特性予測式欄の Thermal Conductivity を展開し、 Ammer(Silicate and Borate)を選択します。
- [Calculate]ボタンをクリックすると[Predictive Value]
 欄に予測値 8.968×10⁻¹ W/(mK) (30℃)が現われます。
- 本例の場合、Ratcliffe(Silicate)、Russ(Silicate)の式で
 も計算でき、それぞれ、

8.349×10⁻¹ W/(mK) (0[°]C)、9.256×10⁻¹ W/(mK) (0[°]C) の予測値が得られ、予測計算式による値の違いを比較す ることができます。

- ・特性予測式欄の Refractive Index を展開し、 Appen(Silicate)を選択します。
- Calculate ボタンをクリックすると[Predictive Value] 欄に予測値 1.508 が現われます。
- ・上記のように組成を決めれば、色々な特性について予測 値を計算することができますが、式により組成等の制限 があり、計算ができない場合も多々あります。

7. 特性についての予測式の導出(重回帰分析) – 亜鉛ケイ酸塩ガラスの密度 亜鉛ケイ酸塩ガラスの密度(室温)についての加成式を導出します

<マニュアル第3章D.2、第4章4.2-4.5参照>

1) 重回帰分析のための検索条件設定(重回帰分析検索画面) → 検索実施

- ・状態(State)はデフォルトの glass のままとします。
- ・ガラス系として Zinc-Silicate、特性として
 Density at RT を選択し、出典は NOT Patent とします。

2) 検索結果(重回帰分析検索結果画面)→ 説明変数成分項選択(成分項選択小画面)

TM TM	TERGLA	D.7 - Data Liet f	or Bear	eccion Ana	lucie						1
File	Tools H	eln	or reserv		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				<u>ا</u> ل	<u>مار</u>	
T no		icis s al	<u>en la </u>	1000 (Pearl (Pe	d Iz	1121 (2014) 44	INTEROL	4D 7. De	alam Amahu		i
		1 2 2 7 7 7	কে নক		159	i 📾 🔟 🛡 🛡	INTERG	AD 7: Regres	sion Analy	sis	
							Detail			ĥ	•
				S							
	9	otal Number	379	Compone	nt Unit	mom v Ir	formation +	· · · · · ·			
	N	umber of Sources	110	Proper	ty Unit	Common 💌	Cor	nponent Analy	ze		
Dele	te No.	Glass No.	Dat	a Source	Year	Data Source	Density at RT	Density at RT	Density at R		
	1	GR02.000500	Handbor	k of Glaco	1096	V001 p.0066	(g/tills)	(Freuicuve value)	(Residual)		
	2	GR02-000500	Handbor	k of Glace	1006	v.001, p.0005	2.74		-		
	2	0002-000301	Londbox	ak of Close	1000	0.001, p.0005	2.007				
	3	0802-000302	Hallubut	JK UI GIASS	1900	4.001, p.0005	2.88				
	4	GB02-000503	Handboo	DK OT Glass	1986	v.uu1, p.uu65	3.115				
	5	GB02-000504	Handboo	ok of Glass	1986	v.001, p.0065	2.405				
	6	GB02-000505	Handboo	ok of Glass	1986	v.001, p.0065	2.51				
	7	GB02-000506	Handboo	ok of Glass	1986	v.001, p.0065	2.636				
	8	GB02-000507	Handbo	ok of Glass	1986	v.001, p.0065	2.885				
	9	GB02-000508	Handbo	k of Glass	1986	v.001, p.0065	2.439				
	10	GB02-000509	Handboo	ok of Glass	1986	v.001, p.0065	2.55				,

- ・379件のガラスが抽出されます。
- ・[Component]ボタンより説明変数成分項選択 小画面を開き、重回帰式に使用する成分項を選択します。

🤣 Se	lect Component	Terms			D
]	Selectiion of 1-Con	ponent Terms	_		
	If necessary, cha	inge the following c	on	dition : Apply	
	Min num of ala	eene = 1 K	of	total retrived class	
	Min. num. of gla	sece = 2 //	lae.	coe to ono compo	nont
l	Min. num. or gra	5565 - Z 9	aə	ses to one compo	nen
	Select All Co	omponent Cle	ar	All Component	
	Component	Number of Glasse	es	Max. Content %	
×	SIO2	3	25	85.000	
×	B2O3	1	23	50.000	
v	AI203	1	53	22.500	
v	MgO		11	30.000	
v	CaO		91	30.000	
v	BaO		49	30.000	
V	Li20		23	35.000	
V	Na2O	1	20	40.000	-
V	K20		97	35.000	
V	MnO		5	45.000	
	FeO		1	0.540	
r	CuO		5	3.140	
r	ZnO	3	22	70.000	
V	SrO		18	30.000	
	CdO		1	40.000	
V	PbO		17	40.000	
	SnO		0	0.000	
	Cr2O3		0	0.000	
		·	_	_	
	BACK	Next OK	_	Cancel	

- フォルト条件のままとし、[OK]ボタンをクリックします。 ・これにより説明変数成分項は1成分項までとなります。
 - 現われる[Question]ダイアログで成分項数を確認し、 [OK]ボタンをクリックします。

・本例では最初に現われる1成分項選択小画面においてデ

1成分項数:23

QUEST	ion 🔀
?	Selection of Explanatory Variables in Multiple Regression Analysis: 1.Component Terms: 23 2.Component Terms: 0 3.Component Terms: 0
	OKCancel

	RGLA)7 : Data List f	or Regr	ession A	inalysi	8								لك
-lie To	ois H	enp 🔄 📾 🔺	~ ~		[****	[] [] [] [] []		INT	POL	۵D 7۰	Pogr	ossio	n Anat	
	- () -	ച്ച് തി	গলে (পলে)	[E] /83	(COUP)	(ara) ara) 🕒 💌					Regi	033101	i Ana	ya
							Deta	il						
	Т	otal Number	379	Comp	onent L	Init mol% 💌	Informa	tion	+,-	,*, <i>I</i>		_		
	N	umber of Sources	110	Pro	iperty L	Init Common 👻			Com	oonent	An	alyze)	
Delete	No.	Glass No.	Data S	ource	Year	Data Source Number	SiO2	B203	AI203	MgO	CaO	BaO	Li20	Ē
	1	GB02-000500	ndbook	of Glass	1986	v.001, p.0065	65.00						15.00	P
	2	GB02-000501	ndbook	of Glass	1986	v.001, p.0065	60.00						15.00	7
	3	GB02-000502	ndbook	of Glass	1986	v.001, p.0065	55.00						15.00	1
	4	GB02-000503	ndbook	of Glass	1986	v.001, p.0065	50.00						15.00	1
	5	GB02-000504	ndbook	of Glass	1986	v.001, p.0065	75.00						20.00	1
	6	GB02-000505	ndbook	of Glass	1986	v.001, p.0065	70.00						20.00	1
	7	GB02-000506	ndbook	of Glass	1986	v.001, p.0065	65.00						20.00	1
	8	GB02-000507	ndbook	of Glass	1986	v.001, p.0065	55.00						20.00]
	9	GB02-000508	ndbook	of Glass	1986	v.001, p.0065	70.00						25.00	1
	10	GB02-000509	ndbook	of Glass	1986	v.001. p.0065	65.00						25.00	1

3) 重回帰分析実施(重回帰分析実行画面)

🤡 INTE	RGLAD 7 : Execution	of Regression A	Analysis					X
File To	iols Help							
8	ð 🗵 🕐 🔞 🕼				INTERGLAD	7: Regres	sion Analys	sis
Proper	by 0510 Density at RT (C	common)			Execute Ver	ify Result		
Analysi	s Condition		Select Con	nponents				
Analysi	s Method : ○y=∑a,x,+k		Select #	Il Component	Clear All Compo	ment	Apply	
	⊛v=Σax+a	x Σx > 00 -	Exclud	a component terr	me lace than 2	eteb	19999	
	e	×.× =1 [99] •	Fyclud	e 2.83 T com	nonent terms und	er Iti= 0.0 v		
variable	sy: ● y ⊖ 1y	log y	E CAUNA	e E-do Con	iponent terms and			
Select	Component	Coefficient	Std. Error	tValue	Component vs Property	Number of Data	Component vs Property Correlation	
	0.00				Conelation	005	Plot	
	8102				-0.38737	325	Figure	
~	8203 81203				0.19047	123	Figure	- 1
-	MaO				-0.03903	11	Figure	
	CaO				0.05536	91	Figure	
V	BaO				0.28831	49	Figure	
V	Li20				-0.18686	23	Figure	-
V	Na2O				-0.39027	120	Figure	
V	K20				-0.23398	97	Figure	
V	MnO				0.10783	5	Figure	
V	CuO				-0.09197	5	Figure	
V	Zn0				0.41101	322	Figure	
V	SrO				0.09525	18	Figure	
×	PbO				0.25174	17	Figure	
V	Fe203				-0.15693	10	Figure	
V	As203				0.06022	45	Figure	
~	Y203				0.31102	23	Figure	-

QUEST	юм 🛛 🛛
?	All components of some glasses have the same values. Are the first glass data used for analysis, and are other glass data not used? The Delete checkboxes in glass list attach checks to the glass data not used.
	OK Cancel

File Ti	ools Help								
	3 🗵 🕐 🎯	6			I	NTERGLAD	7: Regres	sion Analy	si
Proper	ty				E	verute Veri	ify Result		
	0510 Density a	RT (Co	mmon)		E.	vecute ven	ny result		
Analys	is Condition			Select Compo	onents				
Analysi	s Method : 🔾 Y=2	a,x,+k		Select All C	Component	Clear All Compo	nent	Apply	
	⊚ y-2	a,x,+a,;	x, Σx,>99 🗸 ų	Exclude r	component term	s less than 3	data		
			× 1	Exclude	2.83. 🔻 comp	onent terms und	er iti= 0.0 🔻		
anapu	sy: ⊚y	U 18	U log y						
						Component	Number	Component	
Select	Componen	t	Conficient	Std. Error	tValue	vs Property		vs Property Correlation	
						Correlation	of Data	Plot	
r	SiO2		2.28304E00	0.019	121.60	-0.38737	307	Figure	
V	B2O3		2.06361E00	0.065	31.750	0.19047	107	Figure	
r	AI2O3		2.49130E00	0.106	23.404	0.20420	143	Figure	
V	MgO		3.48167E00	0.141	24.687	-0.03903	11	Figure	
r	CaO		3.50233E00	0.091	38.598	0.05536	82	Figure	
2	BaO		6.68162E00	0.081	82.132	0.28831	49	Figure	
V	Li20		2.34709E00	0.072	32.684	-0.18686	23	Figure	
~	Na2O		2.86601E00	0.069	41.367	-0.39027	119	Figure	
V	K20		2.48826E00	0.064	38.998	-0.23398	97	Figure	
V	MnO		4.73646E00	0.096	49.162	0.10783	5	Figure	
V	CuO		4.02683E00	1.505	2.675	-0.09197	6	Figure	
2	ZnO		4.79427E00	0.030	158.267	0.41101	304	Figure	
2	SrO		5.24511E00	0.126	41.645	0.09525	18	Figure	
2	PbO		8.22720E00	0.158	52.041	0.25174	17	Figure	
V	Fe2O3		-1.63275E02	95.812	-1.704	-0.15693	10	Figure	
r	As203		2.60116E00	6.699	0.308	0.06022	45	Figure	
V	Y203		8.29549E00	0.138	60.311	0.31102	23	Figure	

・[Analyze]ボタンをクリックし、重回帰分析実行画面へ 移行します。

・[Execute]ボタンをクリックし、重回帰分析を実行しま す。

- [Question]ダイアログに「リスト中に全く同組成のガラ スがある。同組成のガラスがあると重回帰計算ができな いため、これらを除いてもよいか?」が現われるため、
 [OK]ボタンをクリックします。
- ・重回帰分析実行画面に計算結果が現れることを確認しま す。
- ・[Verify Result]ボタンをクリックして重回帰分析検証画 面に移行します。

 ・寄与率 R²が 0.98 と高く、実測値(収録値)と予測値の プロットの y=x の直線よりのばらつきが小さいことを 確認します。(R²を 0.8 以上とすることを推奨します)

5) t 値検定 再計算

- ・重回帰実行画面に戻ってリストの t 値(絶対値)に低いもの(2 未満等)があるかどうかを調べます。
- ・本例では Fe_2O_3 、 As_2O_3 、 Sb_2O_3 の t 値の絶対値が 2 未 満となっています。まず 1 未満の As_2O_3 と Sb_2O_3 のチェ ックをはずし、[Execute] ボタンをクリックし、再計算 を行います。次に 2 未満の Fe_2O_3 のチェックをはずし、 もう一度再計算を行います。これらの操作により 2 未満 の t 値(絶対値)を持つ説明変数成分項が重回帰式より除 外されます。
- ・再度、重回帰分析の検証を行います。
 R²がわずかに下がりましたが、依然 0.98 と高いことを
 確認します。

6) 予測式(重回帰式)完成

重回帰分析検証画面および重回帰分析実行画面に式および各成分項の係数が表示されます。 得られた重回帰式:

Density at RT (g/cm³) = $2.273 \times (SiO_2) + 2.051 \times (B_2O_3) + 2.503 \times (Al_2O_3) + \cdots$

各成分:モル比率(その他以外、20成分)

・重回帰分析検索結果画面でファイル保存アイコンにより分析結果(重回帰式を含め)を保存します。本保存は スタンダード版、CDフル機能版の場合に可能です。インターネット版ではできません。

8. 特性予測(重回帰分析) - 亜鉛ケイ酸塩ガラスの密度

SiO₂ 60 mol%, Li₂O 20 mol%, ZnO 20 mol%のガラスの密度(室温)を予測します

<マニュアル第3章D.2、第4章4.6参照> 亜鉛ケイ酸塩系組成であるため、7.で導出した重回帰式を利用します

1) 検索結果画面から特性予測画面を開く

🤣 INTER	RGLAD	7 : Data List f	or Regr	ession Ana	lysis									×
File Too	ols He	slp		~										
4 (0	¥]⊒	S 🗃 🛔	읣닗			i 🔛 🕐 🥑	6	INTER	RGLA) 7: R	egres	sion	Analys	sis
-)			\cup		[Dotail				-			-
	_						Detail							
	To	ital Number	379	Compone	nt Unil	mol% 🔻	Informatio	m	- *,-,*	, f				
	N	umber of Sources	110	Proper	ty Unit	Common 💌			Compor	nent	Analy	ze		
Delete	N0.	Glass No.	Dat	a Source	Year	Data Source Number	SiO2	B203	AJ203	MgO	CaO	BaO	Li20	
	1	GB02-000500	Handbo	ok of Glass	1986	v.001, p.0065	65.00						15.0	ē _
	2	GB02-000501	Handbo	ok of Glass	1986	Y.001, p.0065	60.00						15.0	2
	3	GB02-000502	Handbo	ok of Glass	1986	v.001, p.0065	55.00						15.0	
	4	GB02-000503	Handbo	ok of Glass	1986	v.001, p.0065	50.00						15.0	
	5	GB02-000504	Handbo	ok of Glass	1986	v.001, p.0065	75.00						20.0	
	6	GB02-000505	Handbo	ok of Glass	1986	v.001, p.0065	70.00						20.0	
	7	GB02-000506	Handbo	ok of Glass	1986	v.001, p.0065	65.00						20.0	H
	8	GB02-000507	Handbo	ok of Glass	1986	v.001, p.0065	55.00						20.0	
	9	GB02-000508	Handbo	ok of Glass	1986	v.001, p.0065	70.00						25.0	
	10	GB02-000509	Handbo	ok of Glass	1986	v.001, p.0065	65.00						25.0	
	11	GB02-000510	Handbo	ok of Glass	1986	v.001, p.0065	50.00						31.2	
	12	GB02-000511	Handbo	ok of Glass	1986	v.001, p.0065	65.00						30.0	-

QUEST	ION 🔀
?	Select glass for composition modeling; otherwise, starting composition value will remain blank.

- ・任意の重回帰分析検索結果画面を開き、[Open] アイコ ンより、保存した 3.1 結果(検索結果画面)を開きます。
- ・特性予測[PROP]アイコンをクリックすると、「モデル組 成を選択してください。…」との [Question] ダイアロ グが現われます。[OK] ボタンをクリックすると特性予 測画面が開きます。この画面の表でいずれかのガラスが 選択された場合には{行のクリックによりその行がアク ティブ(水色)となる}、[Question] ダイアログは現われ ず特性予測画面が開きます。
- 2) 特性予測画面で組成を入力し予測値を計算

	AD 7 : Property Pro	ediction				
File Help						لیک رک رک
8 😒 [?) 🤞 🔞			INTER	RGLAD7: Pro	perty Prediction
Regression	Equation					
		Coefficient			Content (mol%)	
Component	Density at RT			Initial	New	
SiO2	2.273E00				60.000	
B203	2.051E00				0.000	
AI2O3	2.503E00				0.000	Glass-Forming Region
MgO	3.487E00				0.000	
CaO	3.512E00				0.000	
BaO	6.644E00				0.000	
Li2O	2.366E00				20.000	
Na20	2.868E00				0.000	
K20	2.502E00				0.000	\frown
MnO	4.746E00				0.000	Calculate
000	1 008500				0.000	Clear New Content
			Total	0.000	100.000 %	
Broworth						Reset
Property				-		
	Specified		Unit Predictive	/alue	$\mathbf{\nabla}$	
🔶 Densi	ty at RT		g/cm3	2.798		
•						
						Close

- Content の New 欄に特性予測する組成成分値をインプ ットし、[Calculate] ボタンをクリックすると、特性値 が計算されます。
- ・密度予測結果: 2.798 g/cm³
- ・なお、重回帰分析検索結果画面でガラスが選択された場 合には、[Initial] 欄および [New] 欄にそのガラスの 組成が表示されます。[New] 欄を予測する組成に書き 換えて計算します。

9. 組成最適化(重回帰分析) - 特定密度の亜鉛ケイ酸塩ガラス

亜鉛ケイ酸塩ガラスで密度(室温)が2.6 g/cm³となる組成を設計します

SiO₂、B₂O₃,、Na₂O、ZnO からなる組成とした場合

<マニュアル第3章D.3、第4章4.7参照>

8.と同様に亜鉛ケイ酸塩系組成であるため、7.で導出した重回帰式を利用します

1) 検索結果画面から組成最適化画面を開く

2) 組成最適化画面での組成設計(最適化)試行

- ・重回帰分析検索結果画面を開き、[Open]アイコンより、 保存した 3.1 結果(検索結果画面)を開きます。
- ・まずリストからモデル組成を選択します。モデル組成は
 特性値が目標値に近く、また組成も目標成分をできるだ
 け含むものとします。本例の場合には、[Density at RT]
 欄をソートして密度を低高の順に並べ、密度 2.61 g/cm³
 の No.165(GJ02-062095)をモデル例としてクリックし、
 アクティブ(水色)とします。
- ・組成最適化[COMP]アイコンをクリックすると、組成 最適化画面が開きます。
- ・目標値 2.6 を Property の [Target] 欄にインプットし、 [Calculate] ボタンをクリックすると、[Predictive Value] 欄にモデル組成の計算値が現われます。また、 画面の下部のグラフに、選択したモデル組成の密度と目 標値との違い(%) が赤色点で現われます。グラフ右の Vertical Scale の指標を左にドラッグし(左端の 1%ま で)、グラフの赤色点と目標値の差を拡大し確認しやす くします。

- ・次に [Clear New Content] ボタンをクリックし、Content の [New] 欄をすべて0にします。New 欄の SiO₂、 B₂O₃、Na₂O、ZnO のセルに、左の initial(モデル組成)値を参考に成分値をインプットします。本例では SiO₂、 Na₂O、ZnO については initial 値と同じ値(整数)を、B₂O₃については 10 と入れます。ここで [New] 欄をソー トして数字の入っている成分を上部に並べて確認します。合計が 100%でなくても計算で 100%に按分されるた め問題ありません。
- ・[Calculate] ボタンをクリックすると [New] 欄に記載した組成の特性値が計算され、[Predictive Value] 欄に 現われます。また、グラフにも新たな赤色点が表れ、目標値との差を確認できます。

- ・次に Content の [New] 欄の値を修正し、再計算します。この操作を繰り返し、特性値を目標値に近づけていきます。赤色点が目標値から逆に離れる場合には、[Erase] ボタンを押し、赤色点と New 組成を元に戻します。成分値の修正は、重回帰係数(Coefficient)の絶対値が大きい成分ほど、特性値の増減が比例して大きくなることを考慮しながら行います。本例の場合には重回帰係数の大きい ZnO を少しずつ増やしていきます。
- ・最終的に本例では、下記の組成で Density at RT が 2.602 g/cm³となります。
 SiO₂ 66.3%、B₂O₃ 9.0%、Na₂O 14.3%、ZnO 10.4% (mol%)
- ・なお、目標特性となる組成は当然一つではないため、範囲に制限のある成分を固定し、他の成分を変えて試行し、 最適化します。
 - 🈻 INTERGLAD 7 : Ternary Plot File Help 🖨 🖬 📝 🍯 ダ **INTERGLAD 7: Ternary Plot** SiO2 (100%) mol% SiO2 : -----Na2O : -----ZnO : -----≶ ¢ 6 🗢 Initial 9x O New Na2O (100%) ZnO (100%)
- 3) 3 成分系ガラス化範囲データとの関係調査
- ・また、New および Initial 組成につき、3 成分のガラス 化範囲データとの関係を [Glass-Forming Region] ボ タンをクリックすることにより確認できます。本例では 上記の最終組成(New)について SiO₂-Na₂O-ZnO の 3 成 分系のガラス化範囲データとの関係を三角図で示しま す。
- ・ガラス化範囲データは3成分で100%とした場合のデー タのため、他の成分が多くなると違いが大きくなること に留意が必要です。

10. 特性予測(重回帰分析3次式) - ホウケイ酸塩ガラスの屈折率

SiO₂-B₂O₃-R₂O-RO 系組成(下記)のガラスの屈折率を予測します

 $SiO_2 \ 65\%, \ B_2O_3 \ 10\%, \ MgO \ 5\%, \ CaO \ 4\%, \ Na_2O \ 7\%, \ K_2O \ 5\%, \ Al_2O_3 \ 4\% \quad (mass\%)$

<マニュアル第3章D.2、第4章4.2-4.6参照>

1) 重回帰分析のための検索条件設定(重回帰分析検索画面)→ 検索実施

・組成の検索条件を以下とします。 SiO₂ + B₂O₃ + (Na₂O or K₂O \geq 0) + (MgO or CaO \geq 0) \geq 95 mass%

2) 検索結果

ile To	ols He	sip											
(2	S 🗃 🛔		2 🔛		1 🔛 🕐 🥑	6	INTER	GLA	D 7: R	egres	sion	Analysi
							Detail						
		Cotal Number	740	Jommon	ont H	at mass%	Informati	ion		• •			
	-	local marrison	740	Compon	OIR OI	industri -	mormad				\sim		
	1	Number of Source	s 118	Prop	erty Ur	iit Common 💌		<u> </u>	Comp	onent	Anat	yze)
Delete	N0.	Glass No.	Data	Source	Year	Data Source Number	SiO2	B2O3	MgO	CaO	Na20	K20	Refractive
	1	GJ05-008626	Glastech.	Ber.	1987	Y.060, p.0234	73.03	16.92			10.04		
	2	GJ05-008627	Glastech.	Ber.	1987	v.060, p.0234	72.65	16.83			8.99	1.52	1
	3	GJ05-008628	Glastech.	Ber.	1987	v.060, p.0234	71.91	16.66			6.92	4.51	
	4	GJ05-008629	Glastech.	Ber.	1987	v.060, p.0234	71.54	16.58			5.90	5.98	
	5	GJ05-008630	Glastech.	Ber.	1987	v.060, p.0234	71.17	16.49			4.89	7.44	1.502
	6	GJ05-008631	Glastech.	Ber.	1987	Y.060, p.0234	70.81	16.41			3.89	8.88	
	7	GJ05-008632	Glastech.	Ber.	1987	v.060, p.0234	70.46	16.33			2.91	10.31	
	8	GJ05-008633	Glastech.	Ber.	1987	v.060, p.0234	69.75	16.16			0.96	13.12	
	9	GJ05-008634	Glastech.	Ber.	1987	v.060, p.0234	69.41	16.08				14.51	
	10	GB05-010781	Handbook	of Glass	1986	v.001, p.0548	84.69	15.31					
	11	GB05-010782	Handbook	of Glass	1986	Y.001, p.0548	83.81	16.19					
	12	GB05-010783	Handbook	of Glass	1986	v.001, p.0548	77.54	22.46					
	13	GB05-010784	Handbook	of Glass	1986	v.001, p.0548	64.71	35.28					
	14	GB05-010785	Handbook	of Glass	1986	v.001, p.0548	63.32	36.68					
	15	GB05-010786	Handbook	of Glass	1986	v.001, p.0548	4.99	95.01					
	16	GB05-010787	Handbook	of Glass	1986	v.001, p.0548	84.69	15.31					
	17	GB05-010796	Handbook	of Glass	1986	v.001, p.0549	57.15	42.83					
	18	GB05-010797	Handbook	of Glass	1986	v.001, p.0549	51.76	48.22					
	19	GB05-010798	Handbook	of Glass	1986	v.001, p.0549	44.72	55.26					
	20	GB05-010799	Handbook	of Glass	1986	v.001, p.0549	40.01	59.98					
-			4								i i		•

・740件のガラスがリストアップされます。

3) 重回帰分析(1次式)

- ・まず比較のために1次式による重回帰分析を行います。
- ・1 成分項の選択画面でデフォルト通りの選択条件とする と、18 個の1 成分項が選択されます。

🤣 Se	lect Component	Terms								
ſ	If necessary, cha	ange the following co	ndition : Apply							
	Min. num. of glasses = 1 % of total retrived glasses									
	🖌 Min. num. of gla	sses = 2 gla	sses to one component							
_	Select All Co	omponent Clea	r All Component							
	Component	Number of Glasses	Max. Content %							
r	SiO2	74	97.440							
r	B2O3	74	98.080							
V	MgO	2	7 5.500							
V	CaO	8	4 16.000							
~	Na20	53	2 39.910							
~	K20	22	1 42.940							
V	AI203	10	9 5.000							
V	BaO	1	5 3.000							
V	Li20	1	6 4.960							
	MnO		1 0.004							
	FeO		2 0.085							
	Co0		4 0.370							
	NIO		4 0.370							
~	ZnO	1	2 3.000							
	PbO		2 0.420							
V	Fe2O3	4	1 0.660							
V	As203	2	8 1.700							
r	Sb2O3	1	0 1.200							
	BACK	Next OK	Cancel							

QUES	TION X
?	Selection of Explanatory Variables in Multiple Regression Analysis: (Component Terms: 0) Component Terms: 0
	OK Cancel

	RGLAD 7 : Execution	of Regression A	Inalveie					
File To	ools Help	or regression i	indiyata					
	9 🗵 🝸 🞯 🞯				INTERGLAD	7: Regres	sion Analy	sis
Proper	v					\sim		
201	10 Refractive Index (Typic	al) (Common)		(🗆	xecute	ny Result		
Analysi	is Condition		Select Con	ponents	~ `	\sim		
Analysi	s Method : ○ y=∑a _i x _i +k		Select A	Il Component	Clear All Compo	onent	Apply	
	⊚y=Σa,x,+a	x, Σx,>99 👻	% 🖌 Exclud	e component terr	ns less than 3	data		
variable	ey: ⊛y ⊖ 1/y	o log y	Exclude	e 2-&3- 🔻 com	ponent terms und	ler t = 0.0 🔻		
Select	Component	Coefficient	Std. Error	tValue	Component vs Property	Number	Component vs Property	ſ
					Correlation	of Data	Plot	
V	SI02	1.47356E00	0.002	910.895	-0.19661	548	Figure	Ŀ
r	B2O3	1.46609E00	0.003	512.909	-0.26647	548	Figure	
×.	MgO	1.44104E00	0.113	12.779	0.14223	26	Figure	
V	CaO	1.82452E00	0.027	67.989	0.27275	81	Figure	
V	Na2O	1.67562E00	0.006	290.579	0.57557	385	Figure	
~	K20	1.62266E00	0.005	307.179	0.17377	204	Figure	
2	AI203	1.36068E00	0.065	20.820	-0.18826	96	Figure	
V	BaO	2.00095E00	0.138	14.451	0.02916	15	Figure	
r	Li20	2.11308E00	0.136	15.559	-0.01464	14	Figure	
V	ZnO	1.48695E00	0.242	6.143	0.01392	11	Figure	
r	Fe203	1.56359E00	0.867	1.803	0.13034	38	Figure	
2	As203	1.27896E00	0.339	3.770	-0.01974	25	Figure	
r	Sb203	9.58643E-01	0.651	1.473	0.04016	10	Figure	
~	Nd2O3	1.71887E00	0.066	26.083	0.12850	14	Figure	
V	803	-7.89066E-01	1.942	-0.406	0.08736	10	Figure	
×	H20	-2.73134E01	18.213	-1.500	-0.32268	13	Figure	
V	R203	4.50009E00	1.609	2.796	0.02324	17	Figure	

・重回帰分析実行画面で重回帰分析を実行し検証画面を開 くと、寄与率 R²は 0.7469 と低く、y=x の直線に乗って いないことがわかります。

・y=x から大きく離れた2点を除去し、重回帰分析実行画 面に戻り、再度重回帰分析を行います。

・検証画面を開き R²を確認すると、0.7897 と低いままで す。この例の場合、1 次の重回帰式では充分な予測がで きないことがわかります。

4) 重回帰分析(3次式)

QUEST	rion 🛛
?	Selection of Explanatory Variables in Multiple Regression Analysis: Component Terms: 18 3. Component Terms: 15 3. Component Terms: 15
	OK Cancel

🤣 INTE	RGLAD 7 : Execution	of Regression A	malysis						
File To	iols Help								
₽ €	ð 🗵 🝸 😂 🔕						INTERGL/	AD 7: Regres	sion Analysis
Proper	ly						Execute	Vorifix Bonut	
	2010 Refracti	ve Index (Typical)	(Common)				Execute	Vering Result	
Analysi	s Condition				Select C	ompor	nents		
Analysi	sMethod: ⊖y=Σa _i x _i +Σ	Σb _{ij} x _i x _j +ΣΣΣ	c _{ijk} x _i x _j x _k +k		Selec	t All Co	mponent Ci	ear All Component	Apply
	(∎) y=Σa,x,+Σ	Σb,,x,x,+ΣΣΣ	x, x, x, +a, x,	Σx,>99 - 4	Exc	ude co	mponent terms le	ese than 3	data
		0.17	0.11.	· · · · · · · ·	Exc	ude 2	.83. T compon	ent terms under it)=	0.0 -
variane	iy. ⊛y ⊖ iy	⊖ log y		\sim		_			
				$\langle \rangle$	Compo	nent	Number	Component	
Select	Component	Coefficient	Std. Error	tValue	vs Pro	perty		Correlation	
				/	Correl	ation	of Data	Plot	
×	8102	1.45942E00	0.002	772.204	-0	.21997	546	Figure	<u>^</u>
M	B203	1.45517E00	0.003	512.270	-0	.24280	546	Figure	
×	MgO	1.56346E00	0.071	21.891	6	.15950	26	Figure	
K	CaO	1.68703E00	0.322	5.244	0	.31492	81	Figure	
2	Na2O	1.11817E00	0.020	43.805	6	.52650	383	Figure	1
K	K20	1.33035E00	0.02	53.938	0	.20000	203	Figure	
M	AI203	6.10373E00	2.43	2.503	-0	.20908	95	Figure	
×	BaO	1.89497E00	0.078	25.843	0	.03445	15	Figure	L L
M	Li20	2.34043E00	0.070	33.634	-0	.03637	13	Figure	
×.	ZnO	1.62611E00	0.12	13.047	6	.00992	11	Figure	
K	Fe203	2.44618E00	0.47	5.160	0	.14379	38	Figure	
×	As203	1.02791E00	0.180	5.706	-0	.02981	25	Figure	
ĸ	Sb203	1.72576E00	0.347	4.976		.04850	10	Figure	
×	Nd203	1.82067E00	0.039	46.301	1	.15746	14	Figure	
×	803	1.06650E00	1.037	1.028		.10674	10	Figure	
M	H20	3.45907E01	10.790	3.206	-0	.28171	13	Figure	
×.	R203	3.68107E-01	0.811	0.45	6	.02703	17	Figure	-

 Contraction of Recreasion Analysis

 File
 Help

 Image: Contraction of Recreasion Analysis
 INTERGLAD7: Regression Analysis

 Proputery:
 Contraction of Recreasion Analysis
 INTERGLAD7: Regression Analysis

 Proputery:
 Contraction of Recreasion Analysis
 INTERGLAD7: Regression Analysis

 Proputery:
 Contraction of Recreasion Analysis
 Interaction of Recreasion Analysis

 No.
 Proputery:
 Contraction of Recreasion Analysis
 Proputery:
 Contraction of Recreasion Analysis

 No.
 Proputery:
 Contraction of Recreasion Analysis
 Proputery:
 Contraction of Recreasion Analysis

 No.
 Proputery:
 Contraction of Recreasion Analysis
 Proputery:
 Contraction of Recreasion Analysis

 No.
 Proputery:
 Recreasion Analysis
 Proputery:
 Recreasion Analysis

 No.
 Proputery:
 Recreasion Analysis
 Proputery:
 Recreasion Analysis

 No.
 Proputery:
 Recreasion Analysis
 Proputery:
 Recreasion Analysis

 No.
 Proputery:
 Recreasion Analysis
 Recreasion Analysis

 No.
 Proputery:
 Recreasion An

- ・検索結果画面に戻り、成分項の選択を3成分項までデフ オルト通りの条件で選択すると、左記の成分項数となり ます。
- ・重回帰実行画面で重回帰分析を行い、検証画面を開くと R²が 0.9381 となっており、良好な値であることがわか ります。
- ・しかし、重回帰実行画面でt値を調べると、絶対値が2
 以下の成分項が11あります(1成分項2、2成分項8、3成分項1)。

- ・次に重回帰分析画面の右上[Select Component]欄の3行 目の|t|の最小値設定欄で、下記の手順により、|t|の小 さい成分項の除去・重回帰分析実行を繰り返します。(一 度に除去せず、少しづつ行います)
 - 2,3 成分項 |t|=1.0 より小を削除計算
 - ('2-&3-'と'1.0'を選択して[Apply]ボタンをクリックし、 [Execute]ボタンをクリックします)
 - ② 2,3 成分項 |t|=2.0 より小を削除計算
 - ③ all 成分項 |t|=1.0 より小を削除計算
 - ④ all 成分項 |t|=2.0 より小を削除計算
 - 以上の結果、 |t| はすべて 2 以上となり、 R²は 0.9364
 - となります。これで重回帰式が完成します。

5) 特性予測(特性予測画面)

SINTERGLAD 7 : Property	Prediction	
File Help		
a 😒 🕐 😝 😒	INTERGLAD7: Pro	perty Prediction
Regression Equation		
	Coefficient Content (massic)	
Component Refractive Index (T	Initial New	
SiO2 1.459E	65.000 🔺	
B203 1.455E	0 10.000 =	
MgO 1.593E	5.000	Glass-Forming Region
CaO 1.795E	4.000	
Na20 1.122E	7.000	
K20 1.335E	0 5.000 -	
Component Refractive Index (T	Initial New	
SI02*B203 -2.030E-	0.065	
SIO2*CaO	0.026	
SiO2*Na2O 7.018E-	0.045	Calculate
01037/200 # 0010	n noo 💌	Clear New Content
	Total 0.000 100.000 %	Reset
Property		
0		
Specified	whit Predictive Value	
erractive index (Typical)	1.512	
-		Close

・重回帰分析検索結果画面に戻り、特性予測[PLOP]アイ コンから特性予測画面を開きます。

 [Regression Equation]欄の[Content New]欄に SiO₂
 65%, B₂O₃ 10%, MgO 5%, CaO 4%, Na₂O 7%, K₂O 5%, Al₂O₃ 4%を入力し、[Calculate]ボタンをクリックします。
 ・特性欄の予測値に屈折率1.512が計算されて現われます。

11. 材料設計(組成最適化)(重回帰分析1次式) - 特性を特定したソーダアルミノケイ酸塩ガ ラス

熱膨張係数が80×10⁻⁷/℃、屈折率が1.49となるソーダアルミノ珪酸塩ガラスの組成を設計します

1) 重回帰分析のための検索条件設定(重回帰分析検索画面)→ 検索実施

2) 検索結果(重回帰分析検索結果画面)

ile To	ols He	nlp								
4	2	S 🗃 🛔	84 🗵 😫 🛛		4 🔛 🕐 🥑 🕻	1	INTER	GLA	7: Regressio	n Analysis
						Detail				
		Total Number	43 Common	unt Un	a mass%	Informatio				
	~	rotal Humber	45 Compo	IGHIC OH	1 1000 11 1	mormade	<u> </u>		~	-
		Number of Source	es 18 Prop	erty Un	it Common		Q	Compo	nent Analyze	
Delete	N0.	Glass No.	Data Source	Year	Data Source Number	SIO2	A1203	Na20	Expansion Coeff (Ty (10-7/K)	Expansion Co (Predictive V
	1	GJ02-015829	J. Non-Crystalline S.	. 1977	v.026, p.0517	75.89	1.15	13.67	7.900E+01	-
	2	GJ02-032267	J. Austral. Ceramic	1984	v.020, p.0053	74.57	1.56	14.22	8.690E+01	
	3	GJ02-032270	J. Austral. Ceramic	1984	v.020, p.0053	73.67	1.56	14.82	8.960E+01	
	4	GJ02-032271	J. Austral. Ceramic	1984	v.020, p.0053	73.46	1.56	15.13	9.050E+01	
	5	GJ02-032272	J. Austral. Ceramic	1984	v.020, p.0053	73.36	1.56	15.43	9.140E+01	
	6	GC05-051160	Schott AG (DE)		8329	84.00	3.00	3.00	2.750E+01	-
	7	GC02-051349	Coming Inc (US)		0080	73.00	1.00	17.00	9.350E+01	
	8	GC02-051362	Coming Inc (US)	1976	0317	61.00	17.00	13.00	8.800E+01	
	9	GJ02-055405	Glastech. Ber.	1980	v.053, p.0149	63.38	12.03	24.58	1.210E+02	
	10	GJ06-055406	Glastech. Ber.	1980	v.053, p.0149	62.04	15.69	22.26	1.090E+02	
	11	GJ06-055407	Glastech. Ber.	1980	v.053, p.0149	61.67	18.88	19.45	1.000E+02	
	12	GJ06-055408	Glastech. Ber.	1980	v.053, p.0149	60.36	23.08	16.55	9.200E+01	
	13	GJ06-055409	Glastech. Ber.	1980	v.053, p.0149	59.94	24.20	15.86	8.850E+01	
	14	GJ06-082265	Glass Phys. & Chem	. 1982	v.008, p.0121	65.26	15.63	9.47	7.500E+01	
	15	GJ06-082266	Glass Phys. & Chem	1982	v.008, p.0121	66.19	16.52	10.05	7.500E+01	
	16	GJ06-082267	Glass Phys. & Chem	1982	v.008, p.0121	66.70	17.11	10.40	7.200E+01	
	17	GJ06-082268	Glass Phys. & Chem	1982	v.008, p.0121	68.74	19.44	11.82	7.000E+01	
	18	GB02-088942	Technical Glasses	1961	v.001, p.0265	70.94	1.14	21.29	1.030E+02	
	19	GB02-096094	Properties of Glass	1954	v.001, p.0232	72.12	8.95	18.77	8.110E+01	
	20	GB02-096095	Properties of Glass	1954	v.001, p.0232	72.22	6.87	20.67	9.390E+01	

・成分条件は目的とする組成範囲を広げたものとします。
 本例では成分範囲と合計成分最低量を以下のように設定します。

 $10 \leq SiO_2 \leq 90\%$, $1 \leq Al_2O_3 \leq 25\%$,

- 1≤Na₂O≤25%, SiO₂+Al₂O₃+Na₂O≥90% (%/t mass%)
- ・特性条件は熱膨張係数、屈折率に代表値の設定があるため、共にデータの集まりやすい代表値とします。
- ・また出典は特に規定の必要はありませんが、本例では特 許を除くとします。
- ・43 件のガラスが抽出されます。

Select Component Terms												
Selectiion of 1-Component Terms												
	If necessary, change the following condition : Apply											
	Min. num. of glasses = 1 % of total retrived glasses											
	Min. num. of gla	sses - 1 70 01	total retrived glasses									
L	Min. num. or gra	sses = 2gias	ses to one component									
	Select All Co	mponent Clear	All Component									
	Component	Number of Glasses	Max. Content %									
~	SiO2	43	84.110									
V	AI203	43	24.430									
V	Na2O	43	24.580									
V	B2O3	3	10.000									
V	MgO	7	4.000									
r	CaO	27	9.950									
	BaO	1	1.940									
×	Li2O	5	3.390									
~	K20	6	6.540									
~	BeO	4	9.310									
2	ZnO	2	6.080									
	SrO	1	1.050									
	Cr203	1	0.320									
٧	Fe203	14	0.430									
	Sb2O3	1	0.200									
×	TiO2	5	5.690									
r	S03	3	0.250									
	F	1	4.130									
	BACK	Next OK	Cancel									
	Direis											

Scloeter of Explanatory Variables in Multiple Regression Analysis: 1.Component Terms: 0 3.Component Terms: 0 OK Cancel

File Ti	ools He	elp						
a 6	3 🗵	2 🞯 🚺			IN	TERGLAD 7	: Regressi	on Analysi
Proper	ty							
20	10 Refra	active Index (Typic	al) (Common)			kecute Verif	y Result	
Analys	is Condi	tion		Select Comp	onents			
Anabeci	is Motho	d· ∩y=Σa,x,+k		0.1		01		
muyo	io metrio			Select All	Lomponent	Clear All Compo	nent	Аррну
		● y= ≥ a,x,+a	×× ×× ≥ 99 ▼	Exclude	component tern	ns less than 3	data	
variabl	e y:	🖲 y 🔾 1/y	O log y	Exclude	2-&3- 🔻 com	ponent terms und	er t = 0.0 🔻	
						Component		Component
Select		Component	Coefficient	Std. Error	tValue	vs Property	Number	vs Property
		oomponent		010.210	T Y UNGO	Correlation	of Data	Correlation
V	SiO2	/	1.46602E00	0.005	270.165	-0.47664	43	Figure
2	AI203		1.50377E00	0.011	142.807	0.12083	43	Figure
V	Na2O		1.61568E00	0.019	87.177	0.24936	43	Figure
r	B2O3		1.50262E00	0.048	31.585	-0.55167	3	Figure
×	MgO		1.58360E00	0.100	15.911	0.06615	7	Figure
×	CaO		1.75977E00	0.026	67.881	0.40293	27	Figure
×	Li20		2.15029E00	0.118	18.180	0.35606	5	Figure
~	K20		1.68227E00	0.205	8.222	0.26234	6	Figure
×	BeO		1.73941E00	0.048	36.353	0.30557	4	Figure
2	ZnO		1.65908E00	0.087	19.168	0.14678	2	Figure
2	Fe2O3	\	-4.31762E-01	2.759	-0.156	0.11591	14	Figure
2	Ti02		1.84356E00	0.093	19.798	0.27654	5	Figure
_	803		7.76641E00	8.536	0.910	0.06029	3	Figure
~	1		1 1 1 0 5 0 0 5 0 0	6 604	0.49			Einuro

- ・[Component]ボタンをクリックして成分項選択(1 成分 項選択)画面を開き、デフォルト条件のまま[OK]ボタン をクリックします。
- ・成分項選択確認ダイアログで1成分項が13であること を確認し、[OK]ボタンをクリックします。

- ・重回帰分析検索結果画面で[Analyze]ボタンをクリック すると、屈折率および熱膨張係数の重回帰分析画面が重 なって現われます。
- ・まず、屈折率の画面で[Execute]ボタンをクリックしま す。現われる複数の[Question]ダイアログにOK すると、 画面の表の Coefficient、Std. Error、t-Value に数値が 現われ、重回帰計算が成功したことがわかります。

- ・[Verify Result]ボタンをクリックし、重回帰分析検証画 面を開きます。
- ・寄与率 R²が 0.9225 であり、0.9 以上と良好であること を確認します。
- ・重回帰分析画面で |t|を確認すると、2 より小さい成分 項があることがわかります。

🔯 INTERGLAD 7 : Execution of Regression Analysis										
File Tools Help										
INTERGLAD 7: Regression Analysis										
Proper 10	Property 1020 Expansion Coeff (Typical) (Common)									
Analysis Condition Select Components										
Analysi	is Method : ○y=∑a,x,+	k	Select All	Select All Component Clear All Component Apph						
	oy=Σa,x,+	ax Σx>gg 🚽	5 Exclude	Exclude component terms less than 3 data						
and the second										
variable y: • y · 1y · log y										
					Component	Number	Component			
Select	Component	Coefficient	Std. Error	tVatue	vs Property	af Data	Correlation			
					Correlation	UI Data	Plot			
×	SI02	2.85060E01	5.719	4.98	-0.45276	43	Figure			
V	AI203	5.75987E01	11.098	5.190	-0.00193	43	Figure			
×.	Na20	3.71495E02	19.533	19.019	0.87370	43	Figure			
×	B2O3	-7.44011E01	50.138	-1.484	-0.67225	3	Figure			
2	MgO	8.40238E01	104.893	0.801	-0.01947	7	Figure			
K	CaO	1.29383E02	27.322	4.736	0.01007	27	Figure			
K	Li20	2.69079E02	124.653	2.159	-0.28707	5	Figure			
×	K20	2.37011E02	215.646	1.099	-0.11775	6	Figure			
×	BeO	2.83975E01	50.427	0.563	0.21134	4	Figure			
×	ZnO	6.88894E01	91.223	0.755	-0.14531	2	Figure			
×	Fe203	-6.90206E03	2907.728	-2.374	0.16080	14	Figure			
×	TI02	1.05108E02	98.136	1.071	-0.13594	5	Figure			
×	803	3.02863E04	8995.748	3 867	0.00776	3	Figure			
	Xx	-2.20916E04	6959.997	-3.174			Figure			

 ・ |t|の小さい Fe₂O₃(-0.156)、SO₃(0.910)のチェックをは ずして除外し、再計算を行います。その結果、R²は0.9209 となり、 |t|はすべて 2 以上となります。これにより、 屈折率の重回帰式が完成します。

 ・次に、熱膨張係数の重回帰分析画面で同様に重回帰分析 を行います。

・重回帰分析検証画面で確認すると、R²が 0.9613 であり 良好な値であることがわかります。

- 次に重回帰分析画面の成分項選択欄最下段の|t|条件設定で、下記の手順により|t|の小さい成分項を除去します。
 - all 成分項 |t|=1.0 より小を削除計算
 - ('all'と'1.0'を選択して[Apply]ボタンをクリックし、[E xecute]ボタンをクリックします)
- ② all 成分項 |t|=1.0 より小を削除計算

③ all 成分項 |t|=1.5 より小を削除計算
 以上の結果、t値の絶対値はすべて2以上となり、R²は
 0.9017 となります。これで重回帰式が完成します。

4) 組成最適化(重回帰分析検索結果画面 → 組成最適化画面)

 ・重回帰分析検索結果画面に戻り、まず、目標特性に近い ガラスを選択します。本例では熱膨張係数の予測値が目 標値に最も近い ID 55409の行をクリックして選択しま す。次に組成最適化[COMP]アイコンをクリックすると、 組成最適化画面が開きます。

- ・重回帰式の Content の[Initial]および[New]欄に選択し
 たガラス(55409)の組成が現われています。
- Property の[Target]欄に目標値をインプットします(熱 膨張係数 80×10⁻⁷/℃、屈折率 1.49)。
- [Calculate]ボタンをクリックすると、[PredictiveValue] 欄に選択組成の予測値 1.499 が現われ、画面下部のグラ フに予測値と目標値の差が%でプロットされます。

- Vertical Scale を左にスライドし、グラフのスケールを 拡大し、目標値(Target)と予測値の差を見やすくします。
- ・[New]欄に選択組成の成分値を少し変えてをインプット し、[Calculate]ボタンをクリックし、両特性値ができる だけ目標値に近づくように試行を繰り返します。
- ・本例では、主に SiO₂ 量を増やし重回帰係数の大きい Na₂O、Al₂O₃ 量を相対的に減らしていくことにより最適 化を図ります。
- ・最終的に以下の結果が 1 例として得られます。SiO2
 67.88%、Al₂O₃ 18.25%、Na₂O 13.87%の組成で熱膨張
 係数 79.95×10-7/℃、屈折率 1.493 となります。

12. 組成と構造の相関調査 - SiO2量と架橋酸素(BO)の割合

<マニュアル第3章E、第4章5参照>

- File Tools Help INTERGLAD 7: Glass Structu -INTERGLAD Dat Server

 User Data
 Local AN AN AN AN OR OR OR OR Glass Syster AND V Ele Si-O-Si AND 🗌 IR - Visible 🔲 Visible NMR X-ray XP ESB Neutron XAFS Calc (MO,MD,etc) Ot AND -First Author 💌 Search Reset
- 1) 検索条件設定(構造検索画面) → 検索実施
- ・構造の [Description] 欄に BO/[totalO] を指定し、 [Element]欄に Si-O-Si を指定します。

2) 検索結果(構造検索結果画面)

INTERGLAD 7 : Search St

3) 検索結果の利用(XY プロット画面)

- ・23 件のガラス(出典3件)がリストアップされます。
- Si-O-Siのみでなく、Al-O-Al、Si-O-B、Si-O-Alのデー タもリストに現われます。

- ・SiO₂量-BO/[total O](Si-O-Si)の XY プロットを表示します。
- ・組成を指定していないため、各種の成分を含みますが、 SiO2量の増加により、架橋酸素量が増える傾向がわかり ます。

13. 構造因子間の相関調査 - アルカリケイ酸塩ガラスの Q²と非架橋酸素(NBO)割合

す。

<マニュアル第3章E、第4章5参照>

1) 検索条件設定(構造検索画面) → 検索実施

MITERGLAD 7 : Search Structure Data													
File Tools Help													
INTERGLAD 7: Glass Structure													
State Not Specified DB Site													
Composition													
Convert Could Determine Characteria (Server Claral)											. (@ Server O Local)		
	O massi il monsi O atsi il Periodic Table il Clear Component							Illenr Data					
Main			Component		Component		Component		Component	%min	%max		
	AND	-		OR		OR		OR				-	
	AND	-		OR		OR		OR				-	Glass System
	AND			OR		OR		OR					Alkali Silicate
	AND			UR		OR		OR					AND
	AND			UR		UR		UR				•	AND
0	- %	=< Total	of Main Comp	ioner	its								
Suuc	ure			_		_							
	Description Element Unit Value Min Value Max												
								=					
AND	~	NUOVI	ional of	-	/								
				-			_	_				•	
Meas	ureme	nt Metho	d							Measure	ement Co	ndition	
🗌 IR	- Visibl	e 🗌 Vis	sible - UV 📃 I	umi	nes / IR - Visibl	le	📃 Lumir	ies //	Visible - UV	Tempera	ture		
Ra	man	🗌 NB	IR 🔲 I	Moes	sbauer [XP	S 📃 ESR		X-ray				
Neutron XAFS Calc (MO,MD,etc) Others Pressure									Glass ID				
Data source													
AND T											Max Data 1000 💌		
First Author V													
Josef Clin Model													
				_		_		_					

- ・ガラス系を Alkali Silicate に指定します。
- ・構造情報として Bridging Oxygen Information の Qn Distribution 中の Q2/totalX、および Bridging Oxygen 中の NBO/ [totalO]を指定します。

2) 検索結果(構造検索結果画面)

3) Q² と NBO の相関 (XY プロット画面)

・37 件のガラス(出典5件)がリストアップされます。 ・NBO/ [totalO]については、Oとの結合原子をSi、Ca等

に規定した(Si-O)、(Ca-O)等もリストに現われます。Q2/ totalX も Si だけでなく Al についてのデータも現われま

- ・Q2/totalX(Si)-NBO/ [totalO](O)の XY プロットを表示 します。
- ・Q²の増加と共に NBO 割合も増加しており、ほぼ比例関係にあることがわかります。なお、この関係からはずれた位置にある 2 点のガラスは詳細画面(特性)を調べると、いずれも急冷したガラスであることがわかり、これが他のガラスと同じカーブに乗らない原因と考えられます。

INTERGLAD 7 : XY File Tools Help INTERGLAD 7: XY Plot . 80.00 70.0 . • 60.0 X = 64.53 Y = 2.014E+01 VBO / [total O] (0) 50.0 40.0 30.0 20.0 10.00 60.00 20.00 30.00 40.00 Li2O+Na2O+K2O mol% Y axis Fitting X axi Li20+Na2 NBO / [t Detail -No Fitting Curve Delete Undo Linear ▼ Linear -Delete a Source Close Zoom Reset

- ・比較として Q4/totalX(Si)-NBO/ [totalO](O)の XY プロ ットを表示します。
- ・この図より、 Q^2 の場合とは異なり、 Q^4 が増加すると当 然ですが NBO 割合が減少する様子が示されます。

・また、本例で抽出されたガラスはいずれもアルカリを含 むため、Li₂O、Na₂O、K₂Oの合計量(mol%)とNBO割 合との関係を調べると、左図のようになります。これに より、アルカリ量とNBO割合がほぼ比例し、アルカリ 量の増加により非架橋酸素が増加することが示されま す。