特

ガラス中に含まれる微量不純物評価への XANES スペクトル測定の適用

¹佐賀県立九州シンクロトロン光研究センター,²九州大学シンクロトロン光利用研究センター ³日本電気硝子(㈱),⁴高輝度光科学研究センター 岡島敏浩^{1,2},西田晋作³,中根慎護³,梅咲則正⁴

XANES spectra measurements for the analysis of impurities in glass

Toshihiro Okajima^{1,2}, Shinsaku Nishida³, Shingo Nakane³, Norimasa Umesaki⁴

¹ Kyushu Synchrotron Light Research Center, ² Research Center for Synchrotron Light Applications, Kyushu Univ. ³ Nippon Electric Glass Co., Ltd., ⁴ Japan Synchrotron Light Research Center

1. はじめに

ガラスは一般的に、二酸化ケイ素(SiO₂)や 酸化ホウ素(B₂O₃)のような網目形成物質を主 成分とし、求められる特性に応じて酸化ナトリ ウム(Na₂O)、酸化マグネシウム(MgO)、な どの種々の修飾酸化物を副成分として含有す る。ガラスの製造は各種原料を調合してこれを 溶融し、所望の形状に成型して徐冷するという 工程が一般的だが、この際、原料や製造工程経 由でガラスに鉄(Fe)が不純物として混入す る。Feの混入はガラスの可視光透過率を低下 させて意図しないガラスの着色の原因となるた め、フラットパネルディスプレイに用いるガラ ス基板や太陽電池用カバーガラスなど高い可視 光透過率が求められるガラスでは大きな問題と なる。一方で、意図的にガラスを着色するため

〒841-0005 佐賀県鳥栖市弥生が丘 8-7 TEL 0942-83-5017 FAX 0942-83-5196 E-mail:okajima@saga-ls.jp に,古くから遷移金属元素を添加することも行 われている。添加成分の種類や量を調整するこ とで色調が調整されたガラスも存在し,食器や 装飾品など幅広く用いられ,我々の生活に欠か せないものとなっている。しかしながら,この ような着色元素のガラス中での存在形態及び着 色のメカニズムについては不明なことが多い。

例えば、Feの不純物による着色現象につい ても古くから議論になっている。Danielson¹⁾や Ehrt ら²¹は、着色のメカニズムとして、Fe イ オンのまわりの酸素の配位構造が6配位か ら、4配位になることで着色すると提案してい る。また、Elvers ら³¹はクラスタリングしてい るFe イオンがガラスの中で存在していること を指摘している。加えて、古くから可視光吸収 スペクトルの変化から、着色は Fe の価数の変 化にも対応するとされている。

我々はこのようなガラス中に取り込まれてい る不純物元素の化学状態, すなわち価数や立体 構造と着色などの物性との相関を調べるため に, X線吸収分光 (XAS) 法の一種である

図 1 クロム酸カリウム (K₂CrO₄) から得られた Cr K-edge 領域の XAFS スペクトル

XANES (X-ray Absorption Near Edge Structure, X線吸収端近傍構造)スペクトルの測定 とその理論的な解釈に取り組んでいる。試料に 入射するX線のエネルギー(又は波長)を変 えながら、X線の透過率を測って行くと、図1 のようなスペクトルを測定することができる。 図1は試料にクロム酸カリウム(K₂CrO₄)を 用い. Cr K吸収端近傍での吸収スペクトルを 示している。X線のエネルギーが6keV近傍 で吸収スペクトルが不連続になっているが、こ の不連続は1s(K殻)電子の吸収に対応し、 このことからK吸収端と呼ばれている。この K吸収端のエネルギーは元素固有であり、例え ば、Cr. Mn, Feなどの場合、その値はおお $\downarrow \neq Cr : 6 \text{ keV}$. Mn : 6.5 keV. Fe : 7.1 keV となっている。X線吸収スペクトルは、吸収端 より50 eV程度高エネルギー領域までを XANES *‡tk* NEXAFS (Near Edge X-ray Absorption Fine Structure. 吸収端近傍 X 線吸 収微細構造)と呼び、それ以上の広範囲にわた るエネルギー領域のスペクトルを EXAFS (Extended X-ray Absorption Fine Structure.広 域 X 線吸収微細構造)と呼んでいる。EXAFS スペクトルの解析からは、吸収元素周りに存在 する元素の配位数や原子までの距離などを求め ることができる。X線吸収スペクトルの測定 は、X線回折のように結晶の周期性は必要でな

いことから、ガラスや触媒などの非晶質物質に も広く応用されている。しかし、EXAFS スペ クトルの解析には、数100 eV 以上の幅広い領 域を測る必要があり,多くの元素が入った試料 では吸収端のエネルギー位置が近く, 解析に必 要な十分なエネルギー領域を測定することがで きず、また、スペクトル解析の特徴として吸収 端から離れるに従い、スペクトルの強度を何十 倍、何百倍にまで拡大したスペクトルを取扱う ことから、信号対ノイズ (S/N) 比の高いデー タを取得する必要があるが,不純物元素の場 合、もともとの信号強度が弱いこともあり、解 析に耐えうるデータを取得するのは非常に難し い。さらに、一部の測定方法を除いて、基本的 に EXAFS スペクトルの解析からは、1次元情 報しか得られず、後述するような立体構造に関 する情報は得られない。

このような背景もあり,我々は XANES ス ペクトルの測定と解析に注目し,ガラス中の不 純物の状態解析への応用を行っている。以下の 章では,まず XANES スペクトルの特徴とそ こから得られる情報について紹介する。加え て,スペクトルの解釈を定量的に行うためには 理論的なアプローチも必要であり,現在我々が 行っている第一原理計算を用いた XANES ス ペクトルの解釈への取り組みについても紹介す る。

2. XANES スペクトルの特徴と測定

XANES スペクトルは先にも示したように, 吸収端近傍に現れるスペクトルを示している。 図2は,図1で示したスペクトルのうち吸収端 近傍を拡大したもの,すなわち K₂CrO₄の Cr K-edge XANES スペクトルを示している。比 較のために酸化クロム (Cr₂O₃)のスペクトル (破線)も一緒に示す。クロム酸カリウム中の Cr 原子は4個の酸素原子によって囲まれた四 面体構造 (tetrahedron)をしており,価数は 6価である。一方,酸化クロムでは,Cr 原子 は6個の酸素原子で囲まれた八面体構造 (octa-

Photon energy / eV

図2 クロム酸カリウム(K₂CrO₄)のCr K-edge近 傍のXANESスペクトル(実線)。比較のため に酸化クロム(Cr₂O₃)のスペクトル(破線) も一緒に示す。前者のCr 原子は4個のO原子 に囲まれ、後者は6個のO原子に囲まれてい る。

hedron)をしており、価数は3価である。 XANES スペクトルの形状は両者の間で大きく 違っている。クロム酸カリウムのスペクトルで は、6005 eV 付近からスペクトルの立ち上がり が見られ.酸化クロムの場合では6000 eV 付近 から立ち上がっている。一般的にこの立ち上が りのエネルギーは価数の大きさに比例すること が知られており4.5), 化合物中の元素の価数を判 定するのに役立っている。一方、クロム酸カリ ウムの場合はこのスペクトルの立ち上がりより 低エネルギー側に鋭いピークが観察されてい る。この領域をプレエッジ、そしてピークをプ レピークと呼び、その形状は吸収元素周りの立 体構造を反映している。八面体構造の酸化ク ロムではCr原子周りの対称性はO₄に近いの に対し、4面体構造のクロム酸カリウムではTa である。T₄対称の場合は、O₄対称のような反 転対称性を持たないため、p 軌道と d 軌道の混 成が起こり、プリエッジ領域のピーク強度が強 くなるとされている。余談ではあるが. K 吸収 端近傍のプレピークを1s→3dと帰属した文献 等も見かけられるが、X線の吸収過程は電気双 極子遷移が主であり、この電子遷移の選択則か ら考えると, 始状態が s 軌道の場合, d 軌道へ の遷移は禁制となりX線の吸収は起こらな い"。一方,対称性により p 軌道と d 軌道の混 成が起こった場合には、これに伴う X 線の吸 収が起こるが、あくまでも p 軌道への遷移であ る。電気双極子遷移以外でも電気四重極子遷移 が起こる場合もあるが、その強度は大変弱く、 一部の例外を除いてはほとんど観測されること はない。

このような X 線吸収スペクトルの測定は通 常放射光施設を利用する。国内には幾つかの放 射光施設が建設され、利用されているが、 SAGA-LS や SPring-8 で利用できる⁸⁾。 X 線吸 収スペクトルは、試料前後に置いた検出器で試 料に入射する前の X 線(入射 X 線)の強度と 試料を透過した後の X 線(透過 X 線)の強度 を測定し、入射 X 線強度(I₀)と透過 X 線(I) とは以下のような関係がある。この式から線吸 収係数(ut)を求めることで求められる。

 $I = I_0 exp (-\mu t)$

 $\mu t = -\ln (I/I_0)$

ここでtは試料の厚みである。このようにし て, 試料透過前後の X 線強度を求める方法 (透 過法)により測定された吸収スペクトルは測定 原理にもっとも忠実である。しかし、重元素を 含んでいるために試料を X 線が透過しない場 合や薄膜試料の場合などでは、X線が物質に吸 収されたときにおこる様々な現象を利用するこ ともできる。X線によって1s軌道(K殻)の 電子を励起した場合、その軌道に空孔が生成す る(図3)。この系は不安定なため、安定化し ようとし, 価電子帯の電子が落ち込む。この 時、系全体のエネルギーが余る。そのエネル ギーを近くの電子に与えた場合。特定のエネル ギーを持った電子が物質から放出される。この 電子をオージェ電子と呼んでいる。オージェ電 子の他にも光電子などが放出される。一方、余 ったエネルギーは光子として放出される場合も ある。この光子のことを蛍光 X 線と呼んでい る。これらの強度は X 線の吸収強度に比例し、

基底状態

励起状態(内殻空孔)

図3 内殻空孔効果の説明 基底状態(左図)にX線が入射すると内殻軌道(ここでは1s軌道)に空孔が発 生(右図)する。

前者の電子を検出する手法を電子収量法,後者 の蛍光 X 線を検出するものを蛍光 X 線収量法 と呼んでいる。通常両方の過程が同時に起こる ことが多いが,原子番号が 30 程度より小さい 場合はオージェ電子を放出する割合が多く,超 えた場合は蛍光 X 線を放出する割合が多くな る⁹⁾。このことから,C,N,Oなどの軽元素の 測定では電子収量法が主であり,一方,金属元 素等の測定では蛍光 X 線収量法が主となる。

3. XANES スペクトルの計算

この章では、第一原理計算を用いた XANES スペクトルの計算方法と計算例について示す。 第一原理計算は、実験パラメータの導入やモデ ル化などを必要とせず、量子力学の基本原理か ら電子状態などの物質の性質を非経験的に計算 するものである。計算機の性能向上と低価格化 によって,実験研究者がその実験結果を理論的 に説明するためにも用いられるようになり、新 物質の物性の予測または既存物質の物性の理解 や予測する手段として欠くことのできない研究 手法となっている。X 線吸収の分野において も、物質の電子状態や配位構造などを反映する XANES スペクトルの微細構造の理解に用いら れている¹⁰⁾。第一原理計算には多くの種類が存 在するが、我々はその中でバンド計算の一種で ある Wien2k¹¹⁾を用いて様々な材料への適用を

行ってきた^{12,13}。バンド計算は周期的境界条件 のもとで計算を行うため,第2章で述べたX 線照射により内殻に生じた空孔の効果(内殻空 孔効果)を考慮する必要があるため,内殻空孔 を導入した原子間の相互作用を無視できるくら いに離す必要がある。このことから100原子か ら200原子程度のスーパーセルを用いるバンド 計算を行う必要がある。最近のパーソナルコン ピュータの発達により,このような大規模な計 算も可能になった。

図4はチタン酸カルシウム (CaTiO₃) のCa K-edge XANES スペクトルおよび第一原理計 算により求められた理論スペクトルである。実 験で得られたスペクトルの微細構造が理論計算 でよく再現されている。XANES スペクトルの 計算には、内殻空孔効果を取り入れてある。実 際の計算では、Caの1s軌道の電子を1個抜 き取り, 価電子帯にその電子を加え, 自己無頓 着場の計算を行い、電子構造を求める。次に、 X線の吸収は電気双極子遷移の様相が強いこと から、1s軌道から空軌道への電子双極子遷移 の遷移確率を計算する。励起エネルギーは、内 設空孔効果を考慮していない基底状態と、考慮 した励起状態とで系の全エネルギーを求め、両 者のエネルギーの差から求める。計算結果を実 験結果に合わせるよう,計算で求められた励起 エネルギーから 15.8 eV ほどエネルギーを引い

図4 チタン酸カルシウム (CaTiO₃)のCa K-edge XANESスペクトル。上図:実験で得られたス ペクトル。下図:計算で得られたスペクトル

ている。図5に酸化鉄(ヘマタイト, α -Fe₂O₃) の測定と計算で得られたFe K-edge XANES スペクトルの比較を示す。図4のスペクトル同 様,プレエッジ領域を含めて実験スペクトルの 細かな構造を計算スペクトルが再現している。 計算はスピンの状態も考慮した計算を行った。 図6に最低空準位付近のp軌道とd軌道の状態 密度を示す。この付近のd軌道の状態密度が非 常に強いため,その強度を20分の1にして表 示している。このようにp軌道の準位とd軌道 の準位が重なって現れていることから,プレエ ッジ領域に観察される小さなピークは,p-d軌 道混成が起こったために現れたことがわかる。

ガラス中の Fe イオンの状態に関す る検討

ここでは最近我々が行っているガラス中に微 量に存在する Fe イオンがガラスの着色に与え る影響について進めている研究について簡単に 紹介する。

第1章で紹介したように, Fe によるガラス

図5 酸化鉄 (α-Fe₂O₃) から得られた Fe K-edge XANES スペクトル(実線)と計算で得られた スペクトル(破線)。計算スペクトルは、スピ ン状態を考慮した計算(一点鎖線,二点鎖線) を行い、それらを足し合わせている。

図6 Feの3d軌道(一点鎖線,二点鎖線),4p軌道 (実線,破線)の部分状態密度。d軌道の状態密 度は大きいため,強度を1/20に縮めている。 フェルミ準位近傍(E=0)で4p軌道と3d軌 道の混成が起こっていることがわかる。

の着色メカニズムについての説明は色々なされ ている。この着色に関与するFeの濃度は500 ppm 程度かそれよりも低い濃度である。図7 は微量のFeイオンを含むガラスにTiイオン を添加した場合と、しない場合との着色の様子 を比較したものである。Tiイオンを加えるこ とにより透明だったガラスが茶色に着色してい る。この時Feイオンの濃度は500 ppmであっ た。Feイオンが極端に少ない場合では、Tiイ オン添加の有無によりガラスの透明性に変化は

図7 Ti 添加の有無によるガラスの着色の変化 ガラス中の Fe の濃度は 500 ppm, Ti の濃度は 5% である。

起こらない。

Fe イオンによる着色変化の原因として、Fe イオンの価数が3価のまま6配位から4配位に 変化する^{1,2)}。Feイオンの価数が変化する、Fe イオンがクラスター化する³.が挙げられる。 配位数の6配位から4配位への変化であれば、 第3章で述べたようにプレエッジ領域のスペク トル形状が大きく変化し、価数が変化すると XANES スペクトルの立ち上がりのエネルギー 位置が変化すると予想される。また、クラス ター化すると隣り合うイオンが大きく変化する と考えられ XANES スペクトルの形状も変化 することが予想されるため、これらの変化は XANES スペクトルの測定を行えば容易に検出 できると考えられる。図8はTiイオン添加の 有無による Fe K-edge XANES スペクトルを 示したものである。また、価数の比較を行うた めに,標準試料の FeO および α-Fe₂O₃のスペ クトルも一緒に示す。Fe イオンの価数はぞれ ぞれ2価と3価である。Tiイオン添加の有無 により XANES スペクトルの形状に大きな変 化は見られていない。このことは Fe イオン周 りの配位している酸素原子の対称性(立体配 置)に変化がほとんど起こっていないことを示 している。また, Fe イオンの価数であるが, XANES スペクトルの立ち上がり領域は2価の FeO と3 価の Fe₂O₃ との間にあることから、2 価から3価の間の中間状態にあると考えられ、 Tiの有無による大きな変化は認められない。

図8 図7で示したガラスのFe K-edge XANESス ペクトル 比較のため標準試料(FeO, *a*-Fe₂O₃)のスペク トルも一緒に示している。

現在このような実験事実を説明するために, Fe イオンと Ti イオンとが共存した時にガラス が着色する機構について構造のモデル化やその 構造を用いた XANES スペクトルの予測を行 い,これらの比較から,ガラス中にわずかに存 在する Fe イオンの役割を明らかにするための 研究を行っている。

5. まとめ

現在我々は、立体構造を含む局所構造の変化 に大変敏感な XANES スペクトルの測定と得 られたスペクトルの微細構造の理論的な意味づ けから、ガラスに特有な物性の解明に挑戦して いる。本報告では Fe イオンの濃度が低く.ガ ラス等の非晶質の構造研究等で広く用いられて いる EXAFS スペクトルの測定の困難さと立体 構造情報の欠如、という欠点をカバーするため の XANES スペクトルの測定を行う意義につ いて示した。そして最後に、途中経過ではある が. ガラス中で Fe イオンと Ti イオンとが共 存した場合の着色機構について Fe K-edge XANES スペクトル測定から、これらのスペク トル形状の変化はこれまでに報告された着色メ カニズムでは説明のできないことを示した。現 在. これらイオンの共存状態での着色メカニズ ムについて、実験で得られた XANES スペク

トル,特にプレエッジ領域のスペクトル形状の 変化を説明可能な,局所構造モデルの検討を第 一原理計算を用いて行っている。

各地で放射光施設の建設が進み,実験室並の 実験環境が整備された現在においては, XANESスペクトルの測定は化学結合状態の研 究のために非常に有用な手段となっている。し かし,その解析の多くは指紋照合的な解析がほ とんどである。今回紹介した XANESスペク トル測定と第一原理計算を組み合わせた計測解 析手法は,発展途上の解析手法であるが,ガラ スの着色などの従来説明できなかった現象の 他,ドーパントなど微量不純物が関与する様々 な物性を電子状態のレベルから説明することを 可能にする魅力的な構造解析法である。

参考文献

- P. S. Danielson, J. W. H. Schereurs, J. Non-Cryst. Solids, 38&39 (1980), 177–182.
- D. Ehrt, M. Leister, A. Matthai, Phys. Chem. Glasses, 42 (3) (2001), 231–239.
- 3) A. Elvers, W. Weissmann, Glass Science and Tech-

nol., 74 (2001), 32-38

- T. Ressler, J. Wienold, R. E. Jentoft, T. Neisius, J. Cat., 210 (1) (2002), 67–83.
- 5) P. Weightman, M. Davies, and P. T. Andrews, Phys. Rev. B 30 (10) (1984), 5596–5610.
- F. Farges, G. R. Brown Jr, J. J. Rehr, Geochim. Cosmochim., 60 (16) (1996) 3023–3038.
- 7)例えば、小出昭一郎、"量子力学(Ⅱ)"、基礎物理学 選書5B 第13章光子とその放出・吸収
- 8) SAGA-LS http://www.saga-ls.jp/SPring-8 http://www.spring 8. or.jp/ja/
- K. D. Childs, B. A. Carlson, L. A. LaVanier, J. F. Moulder, D. F. Paul, W. F. Stickle, D. G. Watson, "Handbook of Auger Electron Spectroscopy", edited by C. L. HedbergPhysical Electronics, Inc. Minnesota, USA. M. O. Krause, J. Phys. Chem. Ref. data 8 (2) (1979), 307–327.
- 10) I. Tanaka, T. Mizoguchi, T. Yamamoto, J. Am. Ceram. Soc., 88 (8) (2005), 2013–2029.
- 11) P. Blaha, K. Schwarz, G. Madsen, D. Kvascka, J. Luitz, WIEN 2 k, An Augmented Plane Wave + Local Orbital Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, 2001.
- T. Okajima, T. Yamamoto, M. Kunisu, S. Yoshioka, I. Tanaka, N. Umesaki, Jpn. J. Appl. Phys., 45, (2006), 7028–7031.
- 13) T. Okajima, K. Yasukawa, N. Umesaki, J. Electron Spectrosc. Relat. Phenom., 180, (2010), 53–57.