いまさら聞けないガラス講座

ガラスの熱分析

秋田大学大学院 工学資源学研究科

菅原 透

Thermal analysis of Glass

Toru Sugawara

Akita University, Graduate School of Engineering and Resource Science

1. はじめに

試料の温度をプログラムに従って一定の割合 で変化させながら、その試料の物理的性質の変 化を調べる技法を熱分析と呼ぶ。熱分析は物質 の基礎研究と応用研究だけでなく、測定装置の 自動化により製品の品質管理や工程管理の目的 でも様々な分野で広く利用されており、ガラス 材料においても例外ではない。熱分析が対象と する物性値は多岐にわたるが、ガラスの分野で 特に重要なのはガラス転移領域での比熱や線膨 張の屈曲部分により定義されるガラス転移領域にお けるエンタルピーと体積および比熱と熱膨張率 の変化を中心に、それらの一般的特徴、熱分析 による測定原理と測定例について述べる。

ガラス転移領域におけるエンタル ピーと体積の変化

図1にガラス転移領域でのエンタルピー (H) とその温度微分である比熱(Cp),体積 (V) とその温度微分をVで割った値である体 膨張率(α=1/V(dV/dT))の温度変化の概念 図を示す。ガラスのHとVが温度の増加で増 加するのは、高温であるほど原子の熱振動にエ ネルギーを要し、平均的な原子間距離も広がる ためである。メルトのHとVの温度変化率は ガラスよりも大きい。これらはメルトにおいて は原子の熱振動に加えて構造の変化(網目骨格 の組み替えと原子の結合角、結合距離の変化、 原子の配位状態と配置状態の変化)が生ずるた めに、温度を増加させるためにはより一層のエ ネルギーが必要で、また原子配置の乱雑さの増 加のためにより一層膨張することに対応してい る。

熱分析装置を用いて測定できるのはガラスと メルトの比熱とガラスの線膨張(dL/L)の温 度変化である。dL/Lの温度プロットに対する 傾きから線膨張率($\beta = 1/L(dL/dT)$)が求ま り、ガラスのような等方的な物質ではその3倍 が体膨張率である($\alpha = 3\beta$)。HとVの温度変 化は測定された Cp と α を温度で積分すること で求まる。

ガラス転移領域における H および V は, そ れらの緩和(メルトの構造変化)の速度と冷却 速度の兼合いで決まり,より速い冷却により形 成されたガラスほど大きな H および V を示す (図1)。これは冷却速度が速ければメルトが平 衡構造になるよりも先に構造が凍結されてしま うためである。このときの構造凍結温度はメル

^{〒010-8502} 秋田県秋田市手形学園町1-1 TEL 018-889-2757 FAX 018-837-0409 E-mail:toru@gipc.akita-u.ac.jp

トのH又はVの低温外挿とガラスのそれらの 高温外挿の交点の温度(Tf-1およびTf-2)に 相当すると見なせる。この温度のことをガラス の仮想温度(fictive temperature, Tf)と呼び, 冷却が速いほど仮想温度はより高くなる(Tf-1>Tf-2)^{1).2)}。図1に示されるように,ガラス の仮想温度は冷却時のCpまたはαがガラスと メルトの中間的な値にあるときの温度におよそ 等しい。Moynihan et al.²によれば,冷却速度 の対数はガラス仮想温度の逆数に比例する:

ここで R は気体定数である。ΔH_a はガラス転移領域における構造緩和の活性化エンタルピー であり、メルトの粘性流動の活性化エンタル ピー(粘性率の対数と温度の逆数の傾き)にほ ぽ一致する^{3).4)}。

徐冷および急冷により形成されたガラスを同 じ速度(Q2)で加熱したときのH, Vおよび Cp, *a*の温度変化の概念図を図2に示す。ガ

図1 冷却によるエンタルピーと体積 (a) および比 熱と体膨張係数 (b) の温度変化

図2 加熱によるエンタルピーと体積 (a) および比 熱と体膨張係数 (b) の温度変化

ラス転移領域において, 徐冷ガラスのエンタル ピーと体積はガラスの仮想温度(Tf-2)を過 ぎてもガラスの値の特徴を残したまま一旦オー バーシュートし, その後急増してメルトの値に 近づく。このオーバーシュートはメルトが平衡 な構造になる時間スケールよりも加熱速度の方 が速いことが原因で生ずる。急冷ガラスを加熱 すると仮想温度に到達する前にガラスの緩和が 生じて, 出発時のガラスのHとVの平衡値よ りもやや低い値を示した後にメルトの値に近づ く。それらの結果, ガラスの加熱時のCpとa においては, HとVのオーバーシュート後の 急増に対応する極大が観察され, また急冷ガラ スの場合にはCpとaのジャンプの手前にそれ らの減少が観察される(図2b)。

同じ冷却速度で徐冷された同一の仮想温度 (Tf-2)を示すガラスを異なる速度,Q1およ びQ2(Q1>Q2)で加熱すると,図2に示す ように昇温速度が速いほどHとVのオーバー シュートが遅れて,Cpとαのジャンプの立ち 上がりと極大値も高温側にシフトする。

比熱測定に基づくガラス転移温度は、ジャン プ前とジャンプ後のそれぞれの値を直線で近似 したときの、それらの交点で定義される(図1 b、2b)。ガラス転移温度は仮想温度と同様に ガラスの冷却速度および加熱速度が速いほどよ り高くなり、昇温測定の場合にはガラスの作成 方法(冷却速度、アニールの有無)の違いで異 なる値となる。

エンタルピーについてのガラスの仮想温度 (Tf) は比熱の測定結果から求めることがで き,図3における斜線aとbの面積が等しく なる温度に相当する。数式では次のようにな る:

$$\int_{T_{f}}^{T_{2}} (C_{p}^{melt} - C_{p}^{glass}) dT = \int_{T_{1}}^{T_{2}} (C_{p}^{meas} - C_{p}^{glass}) dT \qquad (2)$$

ここで*C*^{gluss}, *C*^{met}, *C*^{mes} はそれぞれガラスの 比熱の高温外挿値, メルトの比熱の低温外挿値 およびガラス転移領域で測定された実際の比熱 の変化を表す。

図3 比熱の測定結果に基づく仮想温度の算出方法

3. 示差熱分析(DTA)

示差熱分析 (Differential thermal analysis, DTA)は最も単純で簡便な熱分析である。DTA の装置構造の概念図を図4に示す。DTAでは 試料と基準物質 (α -Al₂O₃)を同一の容器に入 れて並べて設置し,電気炉で昇温させながら両 者の温度差 (T_R-T_s)を熱電対により測定する。 T_sの温度は目的試料の測定と同じ昇温速度で 純金属の融点測定に基づき校正される。

試料のエンタルピー変化とDTAで観察され る試料と基準物質との温度差の関係の模式図を 図5に示す。相平衡図上の固相線温度において j点,液相線温度においてh点のエンタルピー を示すある多成分系の組成について考える。こ の組成のガラスを室温(a点)から昇温を開始 すると,試料と基準物質との比熱の差のために わずかな温度差が生ずる。ガラス転移温度(b 点)を過ぎて過冷却メルトになると試料の比熱 が増加するため温度差はやや大きくなる。結晶 化するとエンタルピーが減少するため発熱して ΔT に正のピークが生じ(c-e点),さらに温 度が増加して融解が始まるとエンタルピーを増 加させる必要があるため吸熱してΔT に負の ピークが生ずる(f-h点)。この吸熱部分のピー

図4 示差熱分析装置 (DTA)の概念図. R,基準物 質;S,測定試料;T_R,基準試料の熱電対; T_S,測定試料の熱電対;T_C,電気炉の制御熱 電対;F,電気炉;H,試料ホルダー

ク面積と熱量変化の関係を標準試料を用いて校 正しておけば、試料の融解熱が求まる。ソーダ 石灰ガラスのように徐冷をしても結晶化しにく いガラスの場合には、DTAにより昇温測定を してもガラス転移に伴うわずかな温度差の変化 が観察されるだけで吸熱・発熱のピークは生じ ない(図5の点線)。

図 6 a は Li₂B₂O₇ 組成のガラス試料を様々な 昇温速度で加熱したときの DTA 測定の結果を 示す⁵⁾。結晶化に伴うピーク温度は加熱速度が 遅いほど低温側にシフトする。また加熱速度が 同一であるとき、アニールしていないガラスは したガラスと比較して結晶化によるピーク温度 が高温側にシフトする。このことはアニールに より結晶核の数が増えて、再加熱時に結晶化が 促進されることを示している。結晶化による発 熱ピークの温度 (T_p) と冷却速度 (ϕ) の関係 は、次に示す Kissinger の式で表すことができ る⁶⁾:

図5 試料のエンタルピー変化と DTA 測定において 観察される温度差の模式図

$$\ln\left(\frac{\phi}{T_p^2}\right) = \ln\left(\frac{RA}{E}\right) - \frac{R}{RT_p}$$
(3)

ここで R は気体定数, A は経験的定数, E は 結晶化反応の活性化エンタルピーを表す。図 6 b に図 6 a の結果から得られた $\ln(\phi/T_p^2)$ と T_p の逆数の関係を示す。このプロットの傾きから E の値が求まる。

図6に示されるように,DTA は結晶化のよ うなエンタルピーの不連続や急激な変化を伴う 反応の検出には向いているものの,ガラス転移 のようにエンタルピーが連続し,比熱が不連続 になる相転移(二次相転移)については小さな 変化しかみられない。そのため,ガラス転移領 域での熱的な変化を調べる目的では次に述べる 示差走査熱量測定の方が向いている。

4. 示差走查熱測定(DSC)

示差走査熱量計(Differential scanning calorimeter, DSC)はその構造の違いから熱流束型 と入力補償型の2種類に分けられる(図7)。 熱流束型のDSCはDTAと良く似ているが, 測定試料セル,基準物質セルと熱量検出部が熱 伝導性の良い材質から成るヒートシンクで接続 され,熱抵抗が均一になるように設計されてい る。一方,入力補償型DSCでは各セルの下に 独立のヒーターがあり,測定試料セルと基準物 質セルの温度差を打ち消すように補償ヒーター の電流を調節する。入力補償型はヒートシンク を持たないため高速な昇温と降温が可能な利点 がある。熱流束型と入力補償型で検出される熱 量の精度に大きな差はない。歴史的には入力補 償型が最初のDSCとして開発されたが,現在 ではその後に開発された熱流束型の方が構造が 単純なこともあり普及している。DSCの熱量 検出センサーは測定する温度範囲により異なる

熱流束型DSC

入力補償型DSC

図7 熱流束型 DSC と入力補償型 DSC の概念図. R,基準物質;S,測定試料;T_R,基 準物質の熱流束測定用熱電対;T₅,測定試料の熱流束測定用熱電対;T_c,電気炉 の制御熱電対;F,電気炉;K,ヒートシンク;L,補償ヒーター

が、ガラス材料の分析に用いるような最高 1500℃まで対応しているタイプでは白金熱電 対が用いられる。

DSC 測定でも DTA と同様に基準物質と測 定試料を左右に並べて設置し,電気炉で昇温す る。DSC の測定原理は電気炉から試料への熱 流束 (dq_s/dt,単位は mJ·sec⁻¹ または mW) が電気炉と測定試料の温度差 (T_E-T_s)に比例 するとするニュートンの冷却の法則に基づいて いる ($dq_s/dt=(T_E-T_s)/R$,ここでR は熱抵抗)。 測定試料と基準物質に対する熱流束の差と温度 差,比熱の関係は次式で表すことができる:

$$\frac{dq_s}{dt} - \frac{dq_R}{dt} = -\frac{T_s - T_R}{R} = \frac{(C_p^s - C_p^R)dT_E}{dt}$$
(4)

ここで添字SとRはそれぞれ測定試料と基準 物質を表す。従って、熱流束の差は比熱の差に 比例する(比例係数は昇温速度dT_E/dt)。DTA では式(4)の温度差($T_{s}-T_{R}$)の温度変化を観察 しているのに対して、熱流束型DSCでは一定 の熱抵抗Rを持つヒートシンクと検出器を通 じて温度差(示差起電力)を再現性よく熱流束 に変換できるように工夫されている。また入力 補償型では式(4)の左辺の熱流束を直接測定し ていることになる。

DSC 測定における温度制御の方法と測定さ れる熱流束の時間変化の模式図を図8に示す。 ある温度で一定時間保持した後、一定の昇温速 度で設定温度まで昇温させ、再び温度を保持す る。このとき等温状態で測定される熱流束を結 んだ線(点線)を基線と呼ぶ。基準物質に空の 容器を用いれば、試料セル側に置いた測定試 料,標準試料 (a-Al₂O₃),空の容器で測定され る熱流束(図8のa, b, c)の基線からの差は比 熱の大きさに比例する。すなわちaとcの距離 xとbとcの距離yの比は測定試料の比熱 (*C*^{*s*}_{*p*}) と標準試料の比熱(*C*^{*s*TD}_{*p*})の比に等しい ので $(x/y = C_p^s / C_p^{STD})$, 比熱が既知の物質を標 準試料として用いてxとvを測定すれば、測 定試料の比熱が求まる。DSC による比熱の測 定誤差の一般的な大きさは, 室温からガラス転 移温度までが±1%以内、ガラス転移温度より やや上のメルトでは±2%程度である。温度が 700℃ を超えると検出器周辺の熱の移動に輻射

図8 DSC 測定における温度制御の方法と測定試料
(a),標準試料(b),空の容器(c)で観察される
熱流束の関係

の寄与が加わるため、測定の精度は温度が増加 するにつれて低下する。

図9は形成時の冷却速度の異なる3種類の Ca(PO₃)₂組成のガラスについて熱流束型 DSC により測定された比熱の比較を示す⁷⁾。通常の ガラスでは比熱が単調に増加した後ジャンプす るが(実線),急冷により得られたガラスでは, 冷却速度が速いほどジャンプの手前でより大き な比熱の減少が生じている(点線)。

DSC 測定における温度走査には、測定温度 範囲の最初から最後まで連続的に昇温する方法 (連続スキャン)の他に、温度範囲を細かく区 切って目的温度に到達するまで図8の等温保持 と昇温を繰り返す方法もあり、ステップスキャ ン法またはステップワイズ法と呼ばれている。 ステップスキャン法では基線の時間変動が短く 済むため、同じDSC装置を用いた連続スキャ ン法と比較して比熱の再現性が向上する⁸⁰。ス テップスキャン法では温度の区切り方を細かく するほど平均的な昇温速度が遅くなるため、図 2aのエンタルピーのオーバーシュートが小さ くなり、ガラスからメルトへ転移する時の比熱 のジャンプには極大が見られないことが多い。

5. ガラスの熱膨張測定

ガラスの熱膨張率は押し棒式膨張計(Thermaldilatometer, TD)または熱機械分析装置 (Thermomechanical analyser, TMA)により

図 9 熱流束型 DSC により測定された冷却速度の異なる Ca(PO₃)₂ ガラスの比熱の比較⁵⁾

棒;V. 差動トランス;L. 荷重発生装置

測定することができる。TMA の構造の模式図 を図10に示す。両端面を並行研磨した円柱ま たは角柱形状の測定試料を試料台にセットして 石英ガラス製の押し棒をのせる。電気炉を一定 の速度(5~10℃/min)で昇温させたときの温 度変化に伴う試料の寸法変化を差動トランスで 検出する。TD にプログラムによる応力付加や 引っ張り試験の機能を追加したものがTMA で あり,熱膨張測定の用途としては石英ガラス, 白金,単結晶シリコンなどが用いられる。TD またはTMA を用いたガラスの平均線膨脹係数 の測定方法とガラス転移温度の決定方法は日本 工業規格と ISO により細かく規定されてい る⁹⁻¹¹⁾。

図 11 にガラスの線膨張の測定例を示す¹¹⁾。 線膨張測定におけるガラス転移温度は、 $\Delta L/L_0$ の屈曲前後の値を直線近似した線の交点として 定義される。 $\Delta L/L_0$ は Tgを超えてしばらく増 加した後、減少に転ずる。これはガラスの軟化 による変形に起因するものであり、 $\Delta L/L_0$ が極 大を示す温度のことを軟化点 (softening point, Ts) と呼ぶ。ガラスの平均線膨張係数 ($\beta = 1/$ $L_0(dL/dT))$ は $\Delta L/L_0$ の立ち上がりが生ずる前の $\Delta L/L_0$ の温度変化の傾きから求める。

急冷ガラスでは測定中にガラスの体積緩和が 生じて Tg の手前で ΔL/L₀ の温度変化率が低下 するので、そのような場合にβを求める時に は、AL/L₀の低下が生ずる温度よりも低温側の データを用いる。図12は溶融状態からの空冷 により作成した模擬放射性廃棄物ガラスを用い て 10℃/min の昇温速度で TMA 測定を繰り返 した結果を示す¹²⁾。1回目の測定ではTgより 手前で ΔL/L₀の減少が観察されたが.2回目と 3回目では変化が見られない。このことは1回 目の測定によってガラスの体積緩和が完了した ことを示している。従って、化学組成と熱履歴 がいろいろに異なる試料がある時に組成の差に 起因する線膨張やTgを比べるときは、2回目 以降のデータ同士を比較する必要がある。これ は DSC 測定の場合も同様である。

TD や TMA の測定結果をガラスの室温密度 と組み合わせることで、ガラスの密度の温度変 化と仮想温度におけるガラスの密度(=メルト の密度)を求めることができる。 $\alpha = 1/V(dV/dT)$ を室温 Tr から温度 T まで積分して整理すれば

次式が得られる:

$$V_T = V_{Tr} \exp\left(3\beta \left(T - Tr\right)\right) \approx V_{Tr} \left(1 + 3\beta \left(T - Tr\right)\right) (5)$$

体積を密度 (ρ) に換算すると

$$\rho_T = \rho_{Tr} / \left(1 + 3\beta \left(T - Tr \right) \right) \tag{6}$$

あるガラスをガラス転移領域内のある温度 T_a において体積緩和が完了するまでの十分な時間 アニールした後に急冷したとする。このガラス の室温密度をアルキメデス法などで測定し、 TDや TMA により測定された線膨張率ととも に式(6)に代入すれば、Taにおけるガラスの密 度=メルトの密度が求まる。アニール温度 Ta を変化させて同様な測定を繰り返せば、Tg 直 上のメルトの体膨張率も求めることができ る¹²。

測定方法の異なるガラス転移温度の 相互比較

DSC 測定により求まるガラスの仮想温度(図 3) とガラス転移温度 (Tg(DSC), 図2b), 線膨 張測定により求めたガラス転移温度(Tg(Dil). 図11)は定義が相互に異なるので値も異なる。 またメルトの粘性流動の観点では Tg は粘性率 が10¹²pa·s になる温度(Tg(12))であると定義 されている。組成の異なる多数のシリケイトガ ラスについて、測定方法の異なる Tgの相互比 較が Sipp and Richet¹³⁾, Tangeman and Lange¹⁴⁾ および Yue⁷により報告されている。それらの 結果をまとめたものを図13に示す。ここで、 Sipp and Richet¹³⁾による DTA 測定の Tg(Tg (DTA))は比熱がジャンプして極大値に到達す るまでの中間の温度と定義されており、一般的 な比熱のTgの定義温度よりも10℃程度高い ため、これを補正した値も示した。図13より

シリケイトガラスの Tg について次のことが言 える。(1) 3~10 K/min の昇温速度での DTA および DSC により求まるガラス転移温度は粘 性率が 10¹²pa・s となる温度に±4℃ 以内で一致 する。(2) DSC または DTA と TMA による Tg は化学組成の違いにより±15℃ 以内の範囲 で差が生ずることがある。(3) エンタルピーの 仮想温度は比熱の Tg に比較してわずかに高い が、その差は 10℃ 未満である。

7. おわりに

最近の熱分析装置は自動化とブラックボック ス化により、測定結果をパソコンで機械的に処 理して目的の数値だけを得ることが多くなっ た。そのため誰にでも簡単に測定ができるよう になった一方で、小さな変化や特異的な挙動に 起因する解析の誤りなどを見逃し易くもなって いる。測定原理をよく理解して生データにも注 意を払うことの重要性は現在も変わらない。本

図13 様々なシリケイトガラスに対する異なる測定法で得られたガラス 転移温度の差の比較.測定誤差は Sipp and Richet¹³が±3℃以 内,それ以外は±2℃以内

稿がその一助になれば幸いである。

ガラス材料の熱分析の方法と測定対象は、こ こで述べた装置や比熱と熱膨張率以外にも様々 なものがある。例えば、ガラスの原料バッチが 溶融して固相が消失するまでの複雑な反応の解 析には DTA を熱天秤と組み合わせた TG-DTA による分析が役に立つ。また、石英ガラ スやゼロ膨張ガラスのような熱膨張率の極めて 小さなガラスに対する精密測定には、マイケル ソン光干渉計方式の高感度膨張計¹⁵⁾が有効であ る。熱分析は応用分野が多岐に渡るため、多く の優れた解説書¹⁶⁾⁻²⁰⁾や解説論文²¹⁾⁻²⁵⁾がある。本 稿では取り上げなかった熱分析の手法・対象や DTA, DSC, TD, TMA の測定方法の詳細につ いては、それらの参考文献を参照していただき たい。

参考文献

- 1) A. Q. Tool, J. Am. Ceram. Soc., 29 (1946) 240.
- C. T. Moynihan, A. J. Easteal and M. A. DeMolt, J. Am. Ceram. Soc., 59 (1976) 12.
- 3) D. B. Dingwell, 1995, Rev. Mineral., 32 (1995) 21.
- 4) C. T. Moynihan, Rev. Mineral., 32 (1995) 1.
- 5) N. Koga, K. Yamaguchi, J. Sestak, J. Therm. Anal.

- Cal., 56 (1999) 755.
- 6) H. E. Kissinger, Anal. Chem., 29 (1957) 1702.
- 7) Y. Z. Yue, J. Non-Cryst. Solids, 354 (2008) 1112.
- 8) 片山眞一郎,石切山一彦,十時 稔,熱測定,13 (1986) 17.
- 9) JIS R 3102 : 1995.
- 10) JIS R 3103–3 : 2001.
- 11) ISO 7884–8 : 1987.
- 12) T. Sugawara, T. Shiono, S. Yoshida, J. Matsuoka, K. Minami and E. Ochi, Phys. Chem. Glasses, in press.
- 13) A. Sipp and P. Richet, J. Non-Cryst. Solids, 298 (2002) 202.
- 14) J. A. Tangeman and R. Lange, Am. Mineral., 86 (2001) 1331.
- 15) 笈川直美, NEW GLASS, 22 (2007) 40.
- 16)神戸博太郎,小澤丈夫,新版熱分析,講談社サイエンティフィック,1992.
- 17)日本熱測定学会編集,熱量測定・熱分析ハンドブ ック,丸善株式会社,1998.
- 18) 日本化学会編集,実験化学講座 6,温度・熱・圧 力,丸善株式会社,2005.
- アルバック理工編集,最新熱測定-基礎から応用まで-,アグネ技術センター,2003.
- 20) 斉藤一弥,森川淳子,分析化学実技シリーズ機器 分析編 13,熱分析,共立出版,2012.
- 21) 神本正行, 高橋義夫, 熱測定, 13 (1986) 9.
- 22) 高橋一好, 金属, 66 (1996) 861.
- 23) 前園明一, 笈川直美, 金属, 67 (1997) 328.
- 24) 前園明一, 軽金属, 51 (2001) 464.
- 25) 山田修史, 熱測定, 29 (2002) 72.