高非線形微細構造光ファイバによる 広帯域スーパーコンティニューム光の発生

豊田工業大学大学院工学科 先端フォトンテクノロジー研究センター 大石泰丈

Broadband supercontinuum generation by highly nonlinear microstructured optical fibers

Yasutake Ohishi

Research Center for Advanced Photon Technology Graduate School of Engineering, Toyota Technological Institute,

1. はじめに

光ファイバ中の非線形散乱過程やパラメトリ ック過程を用いると波長変換,光増幅,slow light 生成,波形整形,光スイッチング等全光 信号処理に必要な光波制御を行うことが可能で ある。これまで光信号処理は光半導体や石英フ ァイバを用いて研究がなされてきたが,実用に はいたっていない。石英ファイバの場合,課題 は効率が非常に低いことである。重金属酸化物 ガラスやカルコゲナイドガラスは高い非線形性 を持つことが知られており,非線形導波路素材 として応用が期待されてきた。1980年代以降 その非線形性が盛んに研究された。高非線形ガ ラス材料による効率向上の試みが行われたが, 材料特性のみの研究にとどまり,求める機能が 十分実現されていない。高非線形性を持つガラ ス素材は、大きな材料分散を持ち通信波長帯で 波長分散を零とすることが非常に難しいことが 知られている。その特性がパラメトリック過程 に必要な位相整合を満たす高非線形ガラス導波 路素子実現を困難にしてきた。

微細構造光ファイバ (Microstructured Optical Fiber: MOF) は大きな導波路分散を実現 できるため、材料分散の大きな高非線形ガラス 導波路素子の波長分散制御に有効である。テル ライトガラス⁽¹⁾は、 0.3μ mから 5μ m, また、 カルコゲナイドガラスは 10μ mから 20μ mに 亘る光透過域を有する。それらの広い光透過域 と高い非線形性を利用すれば広帯域スーパーコ ンティニューム (Supercontinuum : SC) や高 効率全光信号処理への展開が期待できる。本稿 では、それら高非線形 MOF の SC 光発生応用 について述べる。

2. 遅延ラマン応答

SC 光は非線形導波路に入射された短パルス 光が導波路内の自己位相変調,相互位相変調,

^{〒468-8511} 名古屋市天白区久方2-12-1 TEL 052-809-1860 FAX 052-809-1869 E-mail: ohishi@toyota-ti. ac. jp

四光波混合, 誘導ラマン散乱による Soliton Self Frequency Shift (SSFS) およびそれに伴 う Dispersive Wave (DW) 発生等の非線形光 学効果によって生じ, "白色レーザ"とも呼ば れる広帯域なコヒーレント光である⁽²⁾。

長波長域への SC の拡張には SSFS が主要な 役割を果たす。その結果,高非線形ファイバ中 での光パルスの非線形シュレディンガー方程式 による伝搬解析には、MOF 媒体の遅延ラマン 応答特性の理解が不可欠となる。石英ファイバ では、ラマン利得スペクトルが一つのローレン ツ関数で近似できるため単一の減衰振動で表わ されることが知られている⁽³⁾。しかし、テルラ イトガラス等の多成分ガラスでは、ラマン利得 が多くのモードよりなっているためひとつの ローレンツ関数で近似することはできない。各 モードの寄与を考慮する必要がある。特にテル ライトファイバのラマン利得スペクトルは、大 きく2つのピークに分かれており、また、それ らは複数のラマンモードよりなる。したがっ て、ひとつのローレンツ関数で近似することは できない。

図1は、テルライトファイバのラマン応答で あり、各ラマンモードによる遅延の総和で表わ されることを明らかにした⁽⁴⁾。また、得られた ラマン応答を使いテルライト MOF 中の SSFS を再現でき、テルライトファイバ中の光パルス 伝搬を解析できることを明らかにした⁽⁴⁾。さら に、カルコゲナイドファイバやフッ化物ファイ

図1. テルライトガラスの遅延ラマン応答

図 3. テルライト MOF の SSFS 特性

バの遅延ラマン応答も明らかにした^{(5).(6)}。その 結果,これら素材の非線形導波路中での非線形 シュレディンガー方程式による短パルス光の伝 搬解析および SC 光発生特性解析を可能にし た。

図3は、図2のラマン利得スペクトルより得 た各種テルライト MOF 中の SSFS を石英ファ イバと比較したものである⁽⁴⁾。ガラス組成によ りシフト量に大きな違いが表れる。これは、ラ マン利得スペクトルの違いによるものであり、 ラマン利得スペクトルを制御することにより、 SSFS を大きく増大できることがわかる。特に ファイバ素材として実績のある TBZN 等で は、石英ファイバと比較してほぼ2倍のシフト 量があり、広帯域 SC 光発生に有効であると言 える⁽⁴⁾。 また、フッ化物ファイバにおいても石英ファ イバに比較して大きな SSFS が得られ、SC 光 の拡張に有効であることを明らかにした⁽⁶⁾。

スーパーコンティニューム光スペク トル

図5にテルライト MOF の SC スペクトルを 示す。ファイバ径を長手方向で変化させ波長分 散を変化させた所謂テーバー MOF としたもの のスペクトルとを比較した。テーバー構造を取 ることにより,図4のように波長分散が変化し て発生した光波間で位相整合が満たされるよう になり,四光波混合が起きやすくなる結果, SC 光スペクトルが広がりやすくなる。テーパー 化前の MOF では,SC 光は1200 から2400 nm で発生しているが、テーパー化後では SC 光は

600 から 2800 nm の 2 オクターブ以上にも亘っ ている。テーパー化により SC 光が格段に広が ることが分かる⁽⁷⁾。図中のテルライト MOF か らの出射光の写真で示すように可視域の SC 光 も発生していることが確認できる。

図 6 にフッ化物光ファイバの SC スペクトル を示す。1.45 μ m で励起したとき、350 から 6280 nm に亘る 4 オクターブ以上の広帯域 SC 光を確認した[®]。これは、光ファイバで観測さ れているもっとも広い SC 光である。

図7にカルコゲナイド (As₂S₃) MOFのSC スペクトルを示す。カルコゲナイドガラスの零 分散波長は3 μ m以上の波長域にある。MOF 構造をとることにより、零分散波長を2.5 μ m に移動させた。2.6 μ m で励起することによ り、4500 nm に及ぶSC 光の発生を確認するこ とができた⁽⁹⁾。

また、カルコゲナイドガラス素材として As₂ S₅ ガラスを用いて SC 光の発生を試みた。この ガラスは、As₂S₃ ガラスより可視光の透過特性 が優れており、光劣化しにくい素材として期待 している。その結果、1370 から 5650 nm の帯 域幅 4280 nm にも広がる SC 光の発生を確認し た⁽¹⁰⁾。カルコゲナイド微細構造光ファイバで5 μ m を超えて SC を発生させたのは初めてであ り、この SC スペクトルはカルコゲナイド MOF で観測されたもの中で最も広いものであ る。As₂S₅ ガラスの透過域は 10 μ m にまで及ん

図 7. カルコゲナイド MOF の SC スペクトル

でいるので, 波長分散制御によりさらなる SC 光の長波長への拡張が期待できる。

4. まとめ

テルライト,カルコゲナイド,フッ化物ファ イバの遅延ラマン応答を初めて解明し,これら の非線形導波路中での SC 光の解析を可能とし た。また,上記素材を用いて紫外から中赤外域 の広帯域 SC 光発生に成功した。

本研究の推進には,文部科学省戦略的研究基 盤形成支援事業,科研費基盤研究(A),科研 費挑戦的萌芽研究,日仏二国間交流事業共同研 究(日本学術振興会・フランス外務省),日本 学術振興会外国人特別研究員制度,愛知県知の 拠点事業等の支援を受けた。

<参考文献>

- (1)Y. Ohishi, Eur. J. Glass Sci. Technol. A, 49, 317, 2008.
- $(2)R.\ R.$ Alfano et al. , Phys. Rev. Lett. , 24, 592, 1970.
- (3)R. Stone et al. , J. Opt. Soc. Am. , 6, 1159, 1989.
- (4)X. Yan et al. , J. Opt. Soc. Am. , 28, 1831, 2011.
- (5)X. Yan et al., J. Opt. Soc. Am., 29, 238, 2012.
- (6)T. Kohoutek et al., J. Opt. Soc. Am., 28, 2284, 2011.
- (7)G. Qin et al., Laser Phys., 21, 1115, 2011.
- $(8) \mbox{G.}$ Qin et al. , Appl. Phys. Lett. , 95, 161103, 2009.
- (9)W. Gao et al. , Opt. Express, 21, 9573, 2013
- (10)W. Gao et al. , Appl. Phys. B, in press.