ガラスの基本単位であるオルトケイ酸の構造を 世界初解明

産業技術総合研究所触媒化学融合研究センター

五十嵐 正安, 佐藤 一彦

The world's first elucidation of orthosilicic acid, basic unit of glass.

Masayasu Igarashi, Kazuhiko Sato

Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST)

はじめに

ガラスに代表される無機ケイ素化合物(シリ カ、ゼオライトなど)だけでなく、有機ケイ素 化合物(シリコーンなど)の基本単位であるオ ルトケイ酸(Si(OH)₄)は、テトラアルコキシ シラン(Si(OH)₄)や四塩化ケイ素(SiCl₄)を 水と反応させる加水分解の際に短時間だけ発生 し、次の反応を起こす「真の前駆体」である^[11]。 これまでにない機能や高い性能を持つケイ素材 料を製造するために、オルトケイ酸の安定な合 成と単離が求められてきた。

また、自然界には石などから溶出したごく低 濃度のオルトケイ酸がある(海水中の平均濃度 0.00673 g/l)^[2]。植物(特にイネ科)は、天然 のオルトケイ酸を吸収し、もみ殻や茎、葉など にシリカを蓄積させて、物理的に丈夫になるだ けでなく、害虫や病原菌を防いでいる^[3]。また、 天然水や麦(イネ科)から作られる飲料など(ビ ールなど)にはオルトケイ酸が溶け込んでおり、

〒 305-8565

動物の骨や髪、皮膚、爪などの体組織の一部の 原料となっている^[4-6]。動植物がオルトケイ酸 を取り込むメカニズムの詳細を明らかにするた めにも、オルトケイ酸の分子構造の解明が求め られてきた。

オルトケイ酸の研究の歴史

19世紀前半にベルセリウスによりシリカが 水に溶ける現象が発見され、溶解性のシリカ(オ ルトケイ酸)の化学がスタートした^[7]。しかし、 当時はその組成や分子構造はわかっていなかっ た。その組成が SiO₄ H₄ であると判明し、さら に、ケイ素上に4つの水酸基-OH が結合した分 子構造(Si(OH)₄)であることが分かったのは 20世紀初頭から中頃にかけてであった。しか し、オルトケイ酸は不安定で単離できなかった ため詳細な構造は不明のまま、現在に至るまで、 理論計算による分子構造の推測が行われてき た。

我々は、機能性有機ケイ素化学品製造プロセ スの研究開発を行っている。有機ケイ素材料の 物性は分子の骨格を形成している Si-O-Si 結合 からなる骨格構造の配列に大きく依存するの で、シロキサン結合の構造を自在に形成できる 技術を開発している。シリコーン創成期の100

茨城県つくば市東 1-1-1 中央第5-2 TEL 029-861-9387

E-mail: masayasu-igarashi@aist.go.jp

NEW GLASS Vol. 33 No. 123 2018

年以上前から現在までシロキサン結合は加水分 解で形成されてきたが、構造を制御して次世代 材料として求められる性能水準を達成するに は、シロキサン結合の「真の前駆体」であるシ ラノールの単離が必要となる。そのため、シラ ノールの中でもガラスやシリコーンの基本単位 でもあるオルトケイ酸を合成・単離する技術の 開発に取り組んだ。

従来法の問題点と 新しい合成法のコンセプト

従来オルトケイ酸(Si(OH)₄)は、テトラア ルコキシシラン(Si(OR)₄)や四塩化ケイ素 (SiCl₄)の加水分解によって発生させるが^[8]、 速やかに脱水縮合してしまい、最終的にはシリ カ(SiO₂)になるため単離例は皆無である(図 1)。

オルトケイ酸が不安定で単離できないのは、 加水分解の際の水が、その後の脱水縮合に大き く影響していると考え、水を使わないオルトケ イ酸の合成反応の開発を検討した。そこで参考 にしたのが製薬などに用いられるベンジル (Bn = CH₂C₆H₅)の脱保護によるアルコールの合 成反応である。ベンジル保護した基質をパラジ ウム炭素存在下、水素と反応させることで、酸 素一炭素結合に水素が付加し、アルコールとト ルエンが生成する (図 2)。

オルトケイ酸の合成と構造解析

ケイ素は炭素と同族の元素なので同様の反応 が進行すると考え、ケイ素にベンジルオキシ基 を有する前駆体を合成し、同様の反応を検討し た。種々反応条件を探索し、最適な触媒、反応 溶媒、添加剤を見出すことができた。ベンジル オキシ基を4つ有するテトラベンジルオキシシ ランを、*N.N-ジメチル*アセトアミド(DMAc) 溶媒においてパラジウムカーボン触媒(Pd/C) 存在下、少量のアニリン(PhNH₂)を添加して

図2 ベンジルの脱保護によるアルコールの合成反応

図3 今回開発した水を使わないオルトケイ酸の合成法

水素化分解する手法を開発することで、オルト ケイ酸を収率良く(96%)合成できた(図3)^[9]。

反応後の NMR を測定した。²⁹ Si NMR では -72.2 ppm にケイ素のピークが観測された。 特筆すべきことに、¹H NMR において4つの OHのプロトンを5.69 ppm に観測することが できた(図4)。従来法の加水分解反応で合成し た場合、系中に水が存在しているため、水とオ ルトケイ酸の間でプロトン交換が起こってしま うことからオルトケイ酸のプロトンのシグナル を観測することができないが、我々の合成法で は水が存在しないことからそのようなプロトン 交換反応が起こらず観測することができた。 ¹H-²⁹Si 二次元 NMR においても相関が観測さ れ、オルトケイ酸のプロトンであることを確認 した(図4)。続いて、高分解能質量分析(ESI-TOF)を測定した。オルトケイ酸に塩素イオン が付加したシグナル ($[Si(OH)_4Cl]^-$ =

NEW GLASS Vol. 33 No. 123 2018

130.9576)が観測された。また、同位体パター ンも理論値と完全に一致しており、質量分析か らもオルトケイ酸である事を確認した(図5)。

安定性を評価するために、²⁹ Si NMR による 経時変化を追跡した。その結果、上述した加水 分解による従来法では速やかに重合してしまう のに対し、開発した反応条件では溶液中におい ても1週間経っても10%程度しか減少(重合) しておらず、非常に安定であった。狙い通り、 今回開発した水を使わない反応では、生成した オルトケイ酸が非常に安定に存在できた。

結晶化を促進させるためにテトラブチルアン モニウム塩("Bu₄NX, X = Cl, Br)を反応溶液 に加えると、1分子のオルトケイ酸と2分子の アンモニウム塩からなる単結晶を得ることがで きた。この単結晶の構造を明らかにするため X 線結晶構造解析を行った。X線結晶構造解析の 結果、オルトケイ酸の2つのヒドロキシル基が 1つの塩素イオンに対して水素結合(図中水色 破線)した結晶構造であった。オルトケイ酸の 分子構造は正四面体構造であり、ケイ素-酸素 結合の平均結合長は0.16222 ナノメートルで あり、酸素-ケイ素-酸素結合の平均結合角は 109.76°であった(図6)。

図0 4ルドライ酸の方丁構造の構造所有結本 赤:ケイ素、青:酸素、白:水素、緑:窒素、灰色:炭素、黄色:塩素

オルトケイ酸の2量体と 環状4量体の合成と構造解析

へキサベンジルオキシジシロキサンを前駆体 として用い、同様の水素化分解を行うことで、 オルトケイ酸の2量体を収率94%で合成する ことができた。この反応の溶媒をDMAcからテ トラメチル尿素(TMU)に置き換え、アニリン を添加せずに行うとオルトケイ酸の2量体が発 生したのちに、反応系中で2量化が進行し、そ れが分子内で脱水縮合することで、オルトケイ 酸の環状4量体を収率42%で得ることができ た(図7)。テトラブチルアンモニウム塩 ("Bu₄NX, X = Cl, Br)を反応溶液に加え、再結 晶化させることによりアンモニウム塩と水素結 合した単結晶を得ることができ、X線結晶構造 解析によりその構造を明らかにした(図8)。2 量体の結晶構造は1分子の2量体と2分子のア ンモニウム塩からなっており、2つのヒドロキ シ基が1つの塩素イオンに対し水素結合(図中 赤破線)した構造であった。また、残りの2つ のヒドロキシ基を介してもう1分子の2量体と 水素結合(図中青破線)していた。環状4量体 の結晶構造は、1分子の環状4量体と4分子の

図7 オルトケイ酸の2量体と環状4量体の合成

図8 オルトケイ酸のオリゴマーの分子構造 上から2量体、環状4量体

アンモニウム塩、さらに、結晶溶媒として2分 子のテトラメチル尿素を含んだ結晶構造であっ た。隣り合う2つのヒドロキシ基が1つの塩素 イオンに対し水素結合(図中水色破線)した構 造であった。

オルトケイ酸の環状3量体の合成と構造 解析

オクタベンジルオキシトリシロキサンを前駆 体として用い、同様の水素化分解を行うと分子 内で脱水縮合も進行し、オルトケイ酸の環状3 量体を収率94%で合成することができた(図 9)。環状3量体の場合にはテトラメチル尿素か ら再結晶化を行うことにより、テトラブチルア ンモニウム塩を添加することなく、結晶溶媒と してテトラメチル尿素を含む単結晶を得ること ができた。2つの環状三量体が向かい合うよう に水素結合しており、さらにそのユニットが1 次元にネットワーク化した結晶構造であること を明らかにした(図 10)。

図9 オルトケイ酸の環状3量体の合成

図10 オルトケイ酸の環状3量体の結晶構造(左)と水素結合ネットワーク(右)

まとめ

オルトケイ酸とそのオリゴマーを粉体として 手に取ることができるようになったことから、 これらをビルディングブロックとして用いた精 密な合成が可能になり、さまざまなトレードオ フの関係を打開できる可能性がある。例えば、 硬くて柔軟な超薄層ガラス膜(ハードコート剤、 ガスバリアフィルム、ディスプレイ用フィルム など)や柔軟性と耐熱性を兼ね備えた超耐熱有 機ケイ素材料(ガスケット、シーリング剤など) などの開発が期待される。また、このオルトケ イ酸を用いることで、革新的なシリカ製造プロ セスの開発や植物や動物のシリカ摂取のメカニ ズム解明に貢献することが期待される。

謝辞:この成果は、国立研究開発法人新エネルギ ー・産業技術総合開発機構(NEDO)の委託業務の 結果得られたものです。

参考文献

- Iler, R. K. The Chemistry of Silica (John Wiley & Sons, 1979).
- [2] Tréguer, P. et al. The silica balance in the world ocean: A reestimate. *Science* 268, 375 – 379 (1995).
- [3] Ma, J. F. et al. A silicon transporter in rice. *Nature*. 440, 688 - 691 (2006).
- [4] Bellia, J. P., Birchall, J. D. & Roberts, N. B. Beer: a dietary source of silicon. *Lancet* 343, 235 - 235 (1994).
- [5] Schwarz, K. & Milne, D. B. Growth-promoting effects of silicon in rats. *Nature* 239, 333 – 334 (1972).
- [6] Carlisle, E. M. Silicon: An essential element for the chick. *Science* 178, 619 – 621 (1972).
- [7] Berzelius, J. De quelques composés qui dépendent d'affinités très-faibles. Ann. Chim. Phys 14, 363 - 396 (1820).
- [8] Ciriminna, R. et al. The sol-gel route to advanced silica-based materials and recent applications. *Chem. Rev.* 113, 6592 - 6620 (2013).
- [9] Igarashi, M., Matsumoto, T., Yagihashi, F., Yamashita, H., Ohhara, T., Hanashima, T., Nakao, A., Moyoshi, T., Sato, K. & Shimada, S. *Nat. Commun.* 8, 140 (2017).