シリカガラスにおける点欠陥 I

首都大学東京 大学院都市環境科学研究科 環境応用化学域

梶原 浩一

Point defects in silica glass I

Koichi Kajihara

Department of Applied Chemistry for Environment, Graduate School of Urban Environemtal Sciences, Tokyo Metropolitan University

1. はじめに

結晶での欠陥(格子欠陥)は「原子の規則配 列が局所的に乱れた状態」として定義され,孤 立した欠陥である点欠陥のほかに,線欠陥(転 位)や面欠陥などがある。一方,非晶質は原子 配列がランダムとされているが,規則性を欠い ているのは中・長距離秩序で,第一配位圏の短 距離秩序は対応する結晶と大差ないことが多 い。ゆえに,非晶質でも「短距離秩序が局所的 に乱れた状態」として点欠陥を定義できる。本 稿では以降,欠陥とは点欠陥をさすものとする。

ガラスには多くの種類があるが、本稿では、 単成分ガラスで高純度品が入手しやすいため、 欠陥に関する理解が最も進んでいると考えられ るシリカガラスに内容を絞り、2回に分けて解 説する。本号では主に欠陥の種類、濃度、成因 について、次号では主に評価法について述べる。

2. シリカガラスの欠陥

シリカガラスは非晶質のシリカ (SiO₂) であ

〒192-0397 八王子市南大沢1-1 TEL 042-677-2827 FAX 042-677-2827 E-mail: kkaji@tmu.ac.jp る。図1にシリカガラスと、代表的な結晶性シ リカである α-石英の構造の模式図を示す。これ らはともに SiO₄ 四面体の頂点共有という共通 の構造をもっており、違いは Si-O 網目のトポ ロジーのみである。

非晶質の欠陥は,歴史的には1956年,R.A. Weeksによってシリカガラスで初めて認知された。¹⁾彼は,ケイ素ダングリングボンド(E'中心, \equiv Si^{*},黒丸は不対電子,三本線は架橋酸素との3本の結合を表す)の電子常磁性共鳴(EPR)スペクトルが, α -石英で同定されていたもの(E'_1 中心)と類似していたことを根拠に,非晶質でも格子欠陥という概念が成り立つと主張した。この提案は現在では広く受け入れられている。

図1 シリカガラスとα-石英の構造の模式図。大きい球 が O 原子、四面体の中心の球が Si 原子、α-石英 の図の枠線は単位胞を表す。 NEW GLASS Vol. 33 No. 124 2018

表1にシリカガラスで見出された主要な欠陥 を一覧する。²⁻⁹Si-O網目に付随した真性欠陥 には、O/Siの化学量論比が局所的に2未満であ る酸素欠乏型と、2を超える酸素過剰型のもの がある。これらの一部は不対電子をもったラジ カル (ダングリングボンド) となるが. Si-O 結合は安定で反応性が低いため、活性ラジカル を安定に保持できる。また、シリカガラスの架 橋酸素はホールを捕獲でき. 自己束縛ホール (STH) となる。STH は通常~200K 以下の低 温でのみ安定であり、 室温では電子と再結合し て元の架橋酸素に戻るが、 室温での観測例もあ る。⁵外因性欠陥となる不純物元素には、天然 石英中の金属元素や SiCl, 中の Cl など原料に 由来するもの. 水素のように酸水素炎に由来す るもの. 光ファイバー中のゲルマニウムや希土 類など意図的に添加されるもの、アルカリ金属 のように合成過程で偶発的に混入するものなど がある。これらのうち H. Cl. Fは、Si-O網 目を切断する = SiX (X = H, OH. F. Cl) 型 の欠陥となる。また、シリカガラスは密度が低 く (~2.2 g cm⁻³) Si-O 網目が疎なため、す きまに気体分子などが取り込まれたり、ラジカ

ルなどの反応しやすい化学種が安定に包接され たりする。^{4.7.8} このすきまが拡散経路となるた めシリカガラスの気体透過性は他のガラスに比 べて大きく, Si の熱酸化による非晶質シリカ絶 縁膜の形成などにも利用されている。

表1に示した欠陥は、いずれもSiO₂の化学量 論性や帯電状態の局所的乱れ(「化学的不規則性 (chemical disorder)」)である。一方、これらが 存在せずとも、シリカガラスは原子配列に中・ 長距離秩序がない点で結晶とは異なる。その本 質はSi-O網目のトポロジーの乱れであり、主 としてSi-O-Si結合角の分布として可視化で きる(例えば^{9,10})。これらは、前述の「化学的 不規則性」に対し、「物理的不規則性(physical disorder)」とみなせる。^{11,12}

3. 欠陥の濃度

シリカは Si-O 結合が強いため化学量論性 が良い。そのため、欠陥の濃度は一般に Si や O の濃度に比べて数桁低く、ppm、ppb などの単 位¹で表されることが多いが、本稿では 1 cm³ あたりの数として欠陥濃度を表す。1 cm³ のシ リカガラス (密度 2.2 g cm⁻³) は Si を 2.2 × 10²²

分類欠陥種(名称)酸素欠乏型欠陥 \equiv Si-Si \equiv (Si-Si 結合, ODC(II), $-$ Si-(2配位 Si, ODC(II) ³), \equiv Si' (ケイ素ダングリングボンド, E'中心) ⁴ 酸素過剰型欠陥 \equiv SiO'(酸素ダングリングボンド, 非架橋酸素ホール中心(NBOHC)) \equiv SiOO'(パーオキシラジカル (POR)), \equiv SiOOSi \equiv (パーオキシ結合)荷電欠陥 \equiv SiOSi \equiv (自己束縛ホール (STH))外因性欠陥・外因性 \equiv SiOH, \equiv SiH, \equiv SiF, \equiv SiCl \equiv SiOAl \equiv (アルミニウム酸素ホール中心(AlOHC)) \equiv Ge'(ゲルマニウムE'中心), \equiv Ge'-(ゲルマニウム電子中心(GEC)) \equiv P'-(リン電子中心(PEC), P ₂), $=$ PO ₂ '(リン酸素ホール中心(POHC))格子間化学種H ₂ , O ₂ , O ₃ , Cl ₂ , N ₂ , H ₂ O, HCl, ClClO, H', Cl', ClO ₂ ', ClO ₃ ', HO ₂ ', 'OH, NO ₂ ', HC'O		
酸素欠乏型欠陥 =Si-Si=(Si-Si 結合,ODC(I)), $-\ddot{Si}-(2 \ Rdc Si, ODC(II)^3),$ =Si' (ケイ素ダングリングボンド, E' 中心) ⁴ 酸素過剰型欠陥 =SiO' (酸素ダングリングボンド,非架橋酸素ホール中心 (NBOHC)) =SiOO' (パーオキシラジカル (POR)), =SiOOSi=(パーオキシ結合) 荷電欠陥 =SiÔSi=(自己束縛ホール (STH)) 外因性欠陥・外因性 =SiOH, =SiH, =SiF, =SiCl 荷電欠陥 =SiÔAl=(アルミニウム酸素ホール中心 (AlOHC)) =Ge' (ゲルマニウム E' 中心), =Ge'-(ゲルマニウム電子中心 (GEC)) =P'-(リン電子中心 (PEC), P_2), =PO_2' (リン酸素ホール中心 (POHC)) 格子間化学種 H_2, O_2, O_3, Cl_2, N_2, H_2O, HCl, ClClO, H', Cl', ClO_2', ClO_3', HO_2', 'OH, NO_2', HC'O	分類	欠陥種 (名称)
酸素過剰型欠陥 = SiO [•] (酸素ダングリングボンド,非架橋酸素ホール中心 (NBOHC)) = SiOO [•] (パーオキシラジカル (POR)),=SiOOSi=(パーオキシ結合) 荷電欠陥 = SiOSi=(自己束縛ホール (STH)) 外因性欠陥・外因性 = SiOH,=SiH,=SiF,=SiCl = SiOAl=(アルミニウム酸素ホール中心 (AlOHC)) = Ge [•] (ゲルマニウム E [•] 中心),=Ge [•] -(ゲルマニウム電子中心 (GEC)) = P [•] -(リン電子中心 (PEC), P ₂),=PO ₂ [•] (リン酸素ホール中心 (POHC)) 格子間化学種 H ₂ ,O ₂ ,O ₃ ,Cl ₂ ,N ₂ ,H ₂ O,HCl,ClClO,H [•] ,Cl [•] ,ClO ₂ [•] ,ClO ₃ [•] ,HO ₂ [•] , [•] OH,NO ₂ [•] ,HC [•] O	酸素欠乏型欠陥	≡Si-Si≡(Si-Si 結合,ODC(I)), -Si-(2 配位 Si,ODC(II) ³), ≡Si (ケイ素ダングリングボンド,E 中心) ⁴
荷電欠陥= SiÔSi = (自己束縛ホール (STH))外因性欠陥・外因性= SiOH, = SiH, = SiF, = SiCl荷電欠陥= SiÔAl = (アルミニウム酸素ホール中心 (AlOHC))= Ge*(ゲルマニウム E'中心), = Ge*-(ゲルマニウム電子中心 (GEC))= P*-(リン電子中心 (PEC), P_2), =PO2*(リン酸素ホール中心 (POHC))格子間化学種H2, O2, O3, Cl2, N2, H2O, HCI, CICIO, H*, Cl*, CIO2*, CIO3*, HO2*, *OH, NO2*, HC*O	酸素過剰型欠陥	≡SiO•(酸素ダングリングボンド,非架橋酸素ホール中心(NBOHC)) ≡SiOO•(パーオキシラジカル(POR)), ≡SiOOSi≡(パーオキシ結合)
外因性欠陥・外因性 帯電欠陥 = SiOH, = SiH, = SiF, = SiCl = SiÔAl=(アルミニウム酸素ホール中心(AlOHC)) = Ge [•] (ゲルマニウム E' 中心), = Ge [•] -(ゲルマニウム電子中心(GEC)) = P [•] -(リン電子中心(PEC), P ₂), =PO ₂ [•] (リン酸素ホール中心(POHC)) 格子間化学種 H ₂ , O ₂ , O ₃ , Cl ₂ , N ₂ , H ₂ O, HCl, ClClO, H [•] , Cl [•] , ClO ₂ [•] , ClO ₃ [•] , HO ₂ [•] , [•] OH, NO ₂ [•] , HC [•] O	荷電欠陥	≡SiOSi≡ (自己束縛ホール (STH))
格子間化学種 H ₂ , O ₂ , O ₃ , Cl ₂ , N ₂ , H ₂ O, HCl, ClClO, H [•] , Cl [•] , ClO ₂ [•] , ClO ₃ [•] , HO ₂ [•] , [•] OH, NO ₂ [•] , HC [•] O	外因性欠陥,外因性 荷電欠陥	 ≡ SiOH, ≡SiH, ≡SiF, ≡SiCl ≡ SiOAl≡ (アルミニウム酸素ホール中心 (AlOHC)) ≡ Ge[•] (ゲルマニウム E['] 中心), ≡Ge[•] - (ゲルマニウム電子中心 (GEC)) ≡ P[•] - (リン電子中心 (PEC), P₂), =PO₂[•] (リン酸素ホール中心 (POHC))
	格子間化学種	$\rm H_2,~O_2,~O_3,~Cl_2,~N_2,~H_2O,~HCl,~ClClO,~H^{\bullet},~Cl^{\bullet},~ClO_2^{\bullet},~ClO_3^{\bullet},~HO_2^{\bullet},~^{\bullet}OH,~NO_2^{\bullet},~HC^{\bullet}O$

表1 シリカガラスにおける主要な欠陥

¹重量分率(ppmw、ppbw)であることが多いが、数分率(ppma、ppba)の場合もあるので注意を要する。

² Si は $\rho \times N_{\text{A}}/M_{\text{SiO2}} = 2.2 \times 6.022 \times 10^{23}/(28.0855 + 15.9994 \times 2) = 2.2 \times 10^{22}$ 個、O はこの 2 倍。

³ 通常の Si – Si 結合より結合距離の長い unrelaxed oxygen vacancy (≡Si…Si≡) は、かつて ODC(II) に帰属されていたが、現在そ の存在はほぼ否定されている (例えば⁹)。

⁴ E' 中心にはいくつか種類があるが、この構造のものは Ey 中心とよばれている。

個. Oを 4.4 × 10²² 個含む²ことを覚えておく と計算に便利である。表2にシリカガラスにお ける欠陥の濃度と検出下限濃度のおよその目安 をまとめた。天然石英を熔融して得られる熔融 シリカガラスに比べ、るつぼを使わず、蒸留精 製された SiCl などのシラン系化合物から気相 合成される合成シリカガラスは高純度で欠陥濃 度も低い。しかし、酸水素炎由来の SiOH 基や、 原料・脱水剤由来のClを比較的高濃度 (~10¹⁹⁻²⁰ cm⁻³)に含むことがある。一方, SiOH 基は波長~1.4 um に O-H 伸縮振動の倍音吸 収を与え、光通信用ファイバーの主な透過損失 要因となるため、これらの用途では~10¹⁵ cm⁻³ 以下まで除去される。このように、 欠陥や不純 物は低濃度でも光吸収や発光が無視できない場 合があることから、その検出と低減は光学用シ リカガラスの高品質化に欠かせない。

欠陥の濃度は低いため,測定法は,高感度で, 欠陥に対して選択的であることが望ましい。汎 用的な構造・組成分析法である X 線回折法,核 磁気共鳴法,X線光電子分光法,蛍光 X 線分析 法などの検出下限濃度は一般に1-0.1%(10¹⁹ -10²⁰ cm⁻³)のため,欠陥に対しては感度不足 であることが多い。この主な理由は,非選択的, すなわち欠陥部位とそれ以外の部位(背景)か らの応答が同程度のため,欠陥による信号が背 景信号に埋もれやすいことである。なお,回折 法や核磁気共鳴法は,Si-O網目のトポロジーの乱れである「物理的不規則性」の解析では有 力な手段となるが,詳細は紙数の都合で割愛す る。

4. 欠陥の生成

欠陥は、製造時に形成されるものと、使用時 に形成されるものとがある。製造時に酸水素炎 で加熱されたシリカガラスは炎中の H₂O に由来 する SiOH 基を含む。一方, SiOH 基濃度の低い 無水シリカガラスでは、SiOH 基を除く際に酸素 欠陥が形成されることがある。また、光ファイバ ーは紡糸時に大きく変形し、その際に多数の Si - O 結合が切断されてダングリングボンドを生 じる。これらの大部分は再結合して Si - O 結合 に戻るが、一部は回復しきれずに紡糸誘起欠陥 としてガラス中に残留する (例えば^{13,14})。

過冷却液体であるガラスの構造の乱雑さ(物 理的不規則性)の程度は構造凍結直前の保持温 度に依存する。その指標のひとつに3員環(Si-O)₃¹⁵⁾がある。この構造のSi-O-Si結合角は~ 130.5°で,安定角とされている~144°より小さ く,歪んだ状態にある。3員環は,α-石英などの シリカガラスより高密度の結晶性シリカには存 在しない。3員環の全対称伸縮振動による~606 cm⁻¹のラマンピーク強度は熱処理温度が高く なるほど大きくなり,過冷却液体の乱雑さ(仮想

log [濃度 /cm ⁻³]	
22	格子原子の濃度(Si: 2.2 × 10 ²² cm ⁻³ ,O: 4.4 × 10 ²² cm ⁻³)
21	フッ素(SiF 基)の固溶上限濃度
20	直接法によるシリカガラス中の SiOH 基濃度
19	無水合成シリカガラス中の SiCl 基濃度(Cl 系ガスで脱水されたもの)
18	ArF,KrF エキシマレーザー用シリカガラス中の SiOH 基濃度
	熔融シリカガラス中の Al 濃度
17	赤外,ラマン分光法による欠陥検出下限濃度(バルク状試料)
15	光通信用ファイバー中の SiOH 基濃度
14	光吸収法,発光法,EPR 法による欠陥検出下限濃度(バルク状試料)

表2 シリカガラス中の欠陥の濃度と検出下限濃度のおよその目安

NEW GLASS Vol. 33 No. 124 2018

温度)に対応することが示された。10

使用時に形成される欠陥の代表例は. 放射線 やレーザー光 紫外光 電子線などの照射で生 じる照射誘起欠陥である。これらの生成機構は 大きく2つに分けられる。ひとつは中性子線や 電子線、イオンビームのような粒子線の照射で 起こる、物理的衝突による原子の弾き出しであ る。もうひとつは電子励起という、バンド間励 起で生じた電子-ホール対や励起子のために結 合が弱められて欠陥形成に至る電子的な過程で あり. X線やy線, レーザー光のような電磁波 の照射によって起こる(例えば^{17,18)})。両者と も、欠陥形成と並行して、Si-O 結合の組み替 えによる密度変化(多くの場合高密度化)とそ れによる屈折率変化を伴う。このように形成さ れた準安定なガラス網目も物理的不規則性の一 種である。照射誘起屈折率変化は、高い精度と 解像度を要求される光リソグラフィー用の硝材 で問題となる。他方、ファイバー回折格子の作 製には欠かせない現象である。¹⁹

歪んだ Si-O-Si 結合は、シリカガラスの紫 外吸収端付近に光吸収を示す。¹² 波長 157 nm の F₂ レーザーはこの光吸収帯を直接励起して ダングリングボンド対を形成する。SiF 基は欠 陥の一種であるものの、それ自身はシリカガラ スの透明領域中に光吸収を与えず、Si-O網目 の切断によって粘度を低下させて構造緩和を促 し、歪 Si-O-Si 結合を低減できる。フッ素ド ープシリカガラスは F₂ レーザーに対する照射 耐性に優れており、「モディファイドシリカ」と よばれている。¹¹⁾

シリカガラスでは以下の2つの真性欠陥過程 が知られている。

- $\equiv \mathrm{Si} \mathrm{O} \mathrm{Si} \equiv \rightarrow \equiv \mathrm{Si}^{\bullet} + {}^{\bullet}\mathrm{O}\mathrm{Si} \equiv \tag{1}$
- $\equiv Si O Si \equiv \rightarrow \equiv Si Si \equiv + O \tag{2}$

 (1)はSi - O結合の切断によるダングリング ボンド対(E'中心とNBOHC)の形成,(2)はSi -O-Si結合が格子間Oと酸素欠陥とに分解 するFrenkel 過程である。(1)で生じるダングリ ングボンドは光吸収法や電子常磁性共鳴(EPR) 法で容易に検出できる。一方(2)は、生じる酸素 欠陥が真空紫外分光法以外では検出しにくいう え. 格子間 O には直接的な検出手段がないた め、過小評価されていた。しかし、電子励起さ れた α-石英では(1)は観察されず、(2)のみが起こ る。このような背景から、最近、y線照射した 高純度合成シリカガラスで全生成欠陥種の定量 が行われ、シリカガラスでも α-石英と同様(2)が 主過程であることが示された。^{20, 21)}また、天然 石英から水熱合成された α-石英では金属不純 物の影響が無視できなかったが、高純度合成シ リカガラスから合成された高純度 α-石英を用 いることで、(2)が不純物によらず進行すること が示された。さらに、その効率はシリカガラス に比べて~1桁低く. 歪 Si-O-Si 結合のない α-石英では欠陥形成が抑制されることが明らか となった。²²⁾

(次号に続く)

参考文献

- 1) R. A. Weeks, J. Appl. Phys. 27, 1376 (1956)
- 2) L. Skuja, J. Non-Cryst. Solids 239, 16 (1998)
- 3) L. Skuja, H. Hosono, M. Hirano, Proc. SPIE 4347, 155 (2001)
- 4) D. L. Griscom, J. Ceram. Soc. Jpn. 99, 923 (1991)
- 5) D. L. Griscom, J. Non-Cryst. Solids, 352, 2601 (2006)
- 6) D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, J. Appl. Phys. 54, 3743 (1983)
- K. Awazu, H. Kawazoe, J. Non-Cryst. Solids 179, 214 (1994)
- 8) K. Kajihara, T. Miura, H. Kamioka, A. Aiba, M. Uramoto, Y. Morimoto, M. Hirano, L. Skuja, H. Hosono, J. Non-Cryst. Solids 354, 224 (2008)
- 9) P. V. Sushko, S. Mukhopadhyay, A. S. Mysovsky, V. B. Sulimov, A. Taga, A. L. Shluger, J. Phys. Condens. Matter 17, S2115 (2005)
- 10) K. Kajihara, J. Ceram. Soc. Jpn. 115, 85 (2007)
- 11) 細野秀雄, 応用物理 69, 415 (2000)
- H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, M. Hirano, Phys. Rev. Lett. 87, 175501 (2001)
- 13) E. J. Friebele, G. H. Sigel, Jr., D. L. Griscom, Appl. Phys. Lett. 28, 516 (1976)

14) 花房広明, セラミックス 21,860 (1986)

15) F. L. Galeener, J. Non-Cryst. Solids 49, 53 (1982)

16) A. E. Geissberger, F. L. Galeener, Phys. Rev. B 28, 3266 (1983)

 N. Itoh, A. M. Stoneham, Material Modification by Electronic Excitation, Cambridge University Press (2001)

- NEW GLASS Vol. 33 No. 124 2018
- 18) 梶原浩一, 細野秀雄, セラミックス 40, 200 (2005)
- 19) 西井準治, 金高健二, 応用物理 68, 1140 (1999)
- 20) K. Kajihara, M. Hirano, L. Skuja, H. Hosono, Phys. Rev. B 78, 094201 (2008)
- 21) 梶原浩一, NEW GLASS 25, 12 (2010)
- 22) K. Kajihara, L. Skuja, H. Hosono, J. Appl. Phys. 113, 143511 (2013)