フローズン・ソルベ法による 光エネルギー貯蔵材料の作製

東京理科大学 基礎工学部

中西 貴之

Preparation of light-energy storage glass ceramics using Frozen sorbet technique

Takayuki Nakanishi

Faculty of Industrial Science and Technology, Tokyo University of Science

1. はじめに

本項では酸化物融液中の相分離を利用して, 結晶とガラスのコンポジットを作製するフロー ズン・ソルベ法を用いて作製した光エネルギー 貯蔵性の結晶化ガラスを紹介する。一般的に結 晶化ガラスは熱力学的に準安定なランダム構造 を持つガラスを再加熱することで,ガラス構造 の一部に結晶を析出させて得られるガラスと結 晶の複合材料を指す。通常,前駆体となる過冷 却液体:ガラスは完全に融解させた原料メルト あるいは気相に対して急冷し固化することで得 ることができる。ここでは筆者が行なってきた 液相と固体相(結晶)が混在する相分離メルト を用いることではじめて作製が可能となる光機 能性ガラスコンポジットを解説する。本作製法

〒125-8585 東京都葛飾区新宿 6-3-1 TEL 03-5876-1717 FAX 03-5876-1639 E-mail: nakanishi@rs.tus.ac.jp

が少しでもガラス業界で何かの役に立てばと願 う。

2. フローズン・ソルベ法

フローズン・ソルベ法^[1-2]とは,複数の酸化 物原料を融解することで得られる高融点結晶相 と融液相の2相混合状態を急冷して,バインダ となるガラスと高融点結晶相が均一分散したバ

ルクセラミックスを作製する技術である(図 1)。これはシャーベットアイスの作製に例える ことができる。オレンジジュースを冷却してい くと0℃以下で水分のみが凝結した氷結晶が析 出する。この状態では糖質が濃縮した果汁と純 粋な氷の結晶の2相状態:ソルベが形成される。 さらに冷却が進むと濃縮した液相も凝結し シャーベットアイスとなる。このシャーベット 作製は職人技であり、冷却工程や果実の成分濃 度の調整などで析出状態が変わり食感や味が大 きく変わる。フローズン・ソルベ法はこの作製 プロセスをガラス作製に応用した作製法であ る。細かい条件調整こそあるが、その特徴とし て.1) 高融点相結晶を含むガラスコンポジッ トが得られる、2) ガラス設計により各相間の 屈折率差を小さくすることで透明化が可能,

3) ガラスからの結晶化では析出できない結晶 とガラスの複合体作製が可能、などが挙げられ る^[1-2]。経験的ではあるが、ガラスを熱処理す る作製法 (ガラス熱処理法) では 1000 ℃程度の 温度域までに単一析出が望める結晶相が好まれ ている。実用的に作製される結晶化ガラスでは 熱処理工程で核生成や成長を制御することで物 質機能を変化させられるが、 ガラスの熱処理で はガラス転移温度より遥かに高温域で析出する 高融点結晶の析出・制御には向かない。複数の 成分で構成された準安定ガラスに対する高温下 での熱処理は目的結晶の析出だけでなく様々な 異種結晶析出や相転移。分相が起こり。 ガラス 本来の性状を保った均一セラミックスを作製す ることが著しく難しくなる。フローズン・ソル べ法ではガラス熱処理法とは真逆に高融点の結 晶相を含む結晶化ガラスを作製することが得意 である。完全に融解する前の結晶+融液の混合 状態は、高融点で安定な結晶相を含んでおり液 相成分がガラス形成領域内の成分であれば、原 理的にはその急冷により結晶とガラスのコンポ ジットが得られる。様々な類似例^[1,3,4]がある が、ここでは光エネルギー貯蔵機能を持つ SrAl₂O₄ (monoclinic, m.p.=1790℃)の結晶化ガ

ラス作製^[5]を挙げる。SrAl₂O₄の結晶量論組成 はガラス化することができない組成である。通 常の溶融法でガラスを得るためにはネットワー ク成分となる SiO。や B,O。のような異成分を新 たに加える必要がある。解説を行うため図 2a) に SrO-Al₂O₃-B₂O₃のガラス形成領域を示す。 斜 線で覆われた領域はガラス化する組成範囲(ガ ラス形成領域) である。SrAl₂O₄ (50SrO: 50Al₂O₃)のガラス化範囲と目的結晶に、組成的 な大きなミスマッチがある場合、そのガラス熱 処理により析出できる結晶は原料組成近辺の結 晶に限られ単一の結晶析出は不可能である。ソ ルベ状態では高温融解液中での結晶析出により 『相平衡のテコの原理』に従った結晶析出と成分 の偏った融液相の2相混合状態となる。その融 液がガラス形成できる領域まで偏りガラス化す れば、図2b)c)に示すように目的結晶を含む 大きな透明ガラスの作製が可能となる。実際の 原料混合組成(図中バツ印)では1650℃で完全 に熔融させた原料を急冷固化させてもガラスは 得られないが. 温度を下げた 1500 ℃の融解では 高融点の SrAl₂O₄相が残り部分溶融状態となる ことでガラスコンポジットを形成することが可 能である。多成分組成では多種の結晶相が同時 析出するがネットワーク成分に低融点なホウ酸 塩を利用し、さらに各結晶間の融点差を利用す ることで目的の高融点結晶相のみを残すことが 可能である。この融解したホウ素豊富な溶液相 がガラス化範囲に偏ることでガラスバインダの

図2 a) SrO-Al₂O₃·B₂O₃のガラス形成領域とSrAl₂O₄ ガラスコンポジットのb) SEM および c) 外観 写真。 働きをする。またガラス作製本来の自由な物質 設計により,添加剤など簡単な成分調整でガラ ス相に機能性(耐水性や機械的強度)を付与す ることもできる。本方法はルビーなど高融点の 酸化物単結晶を合成するフラックス法と類似し ており,融液中で粒径の揃った微小な単結晶粒 子が成長しフラックス成分がガラスマトリック スを形成することで大きなバルクガラスが得ら れる。これは粒子間の接触・熱拡散による固相 間反応とは異なり,結晶形態やサイズの制御が 可能な新規な材料設計を行える新しい技術とな る。以下はその微細構造と優れた光特性につい て述べる。

3. 光エネルギー貯蔵ガラスの作製

ガラス中に分散した SrAl₂O₄に希土類 Euを 微量加えた結晶は, 照射された光励起エネル ギーを吸収し蓄えることのできる光エネルギー 貯蔵材料となる^[68]。この結晶は光エネルギー を結晶格子内で電荷として欠陥に捕縛し. 残光 や応力発光、光伝導といった種々の興味深い性 質を示す^[9-11]。実際のガラス組成等については 文献 [5] を参照して頂きたい。そのガラス色は 黄緑を有し3.0 mmの厚板ガラスにおいて高い 透過性を示す(図 2c))。黄緑色の概観は添加し た希土類 Eu がガラス相中では3価の状態であ り SrAl₂O₄ 結晶中では2価で存在することを示 している。図3には発光と励起遮断10分後の残 光の様子を示した。ガラス中にあるため純粋な 多結晶状態との光物性の比較はできないが.ホ ウ酸融液の中で単結晶微粒子が生成した場合の 残光時間は非常に良好であることがわかった。 この蓄光機能は結晶中の欠陥量および結晶性に 依存する。本系ではガラス中に単結晶が析出す るがホウ酸リッチな融液中での結晶析出は固相 反応の固溶限界以上のホウ素を固溶した状態が 形成され、良好な光エネルギー貯蔵能の一因と なる。実際、この結晶化ガラスは残光だけでな く高強度性を利用し結晶と同様に良好な応力発 光や光電流を示す^[12]。また紫外線励起によりそ

の発光色は時間と共に赤色から白色へと大きな 変化を示す(図3b))。光エネルギー貯蔵物質 は、光照射で発生した電荷(正孔/電子)を捕 縛と解放を繰り返しながら徐々に蓄える。この 変化は長残光蛍光体における発光ライズ現象と して認識され、エネルギーの放出過程である発 光にだけ目を向けると、励起直後の発光強度に 比べ時間を置くことで数倍の強度変化が観測さ れる。この結晶化ガラスはガラス相のEuが励 起時間に対し一定の赤色発光を示し、結晶相か らの緑色発光が大きく時間変化を示すため、見 た目に美しい色変化となって現れる。このよう に高い透明性材料をバルク合成できたことは応 用的な用途だけでなく光機能の解明にも大きな 役割を果たすことが期待できる。

4. まとめ

結晶化ガラスは結晶に由来する特異な光学物 性に加えガラスの一般的特徴である機械強度/ 耐久性/成型加工性を有している。本ガラスは 透明な応力/光センサ材料あるいは光照射時の み微小電流を流す機能を利用した「光スイッチ 材料」への展開が望めるだけでなく残光や応力 発光特性といったメカニズム解明にも利用する ことが可能である。このフローズン・ソルベ法 による古くも新しい材料設計は、これまで不可 能と思うような結晶とガラスのコンポジット合 成も可能になるので、新たな機能を付与した新 材料の創製が期待される。

図3 a) SrAl₂O₄ 結晶化ガラスの発光および残光(励 起停止10min.)。b)発光スペクトルの時間変化 (Ex=395nm)。

参考文献

- [1] T. Nakanishi, S. Tanabe, *IEEE J. Select. Top. Quant. Electron.*, 15 [4], 1171 (2009).
- [2] T. Nakanishi, S. Tanabe, T. Komatsu, et al., J. Ceram. Soc. Jpn., 119 [7], 609 (2011).
- [3] J.Ueda, S.Tanabe, *J.Am.Ceram.Soc.*, 93 [10], 3084 (2010).
- [4] S.Fujita, S.Tanabe, Opt. Mater., 32 [9], 886 (2010).
- [5] T. Nakanishi, et al., J. Am. Ceram. Soc., 98, 423-429 (2014).

- [6] J. Qiu and K. Hirao, Soli. Stat. Commun., 106 795-798 (1998).
- [7] H. Hosono, et al., J. Appl. Phys., 86, 3729-3733 (1999).
- [8] T. Matsuzawa et al., J. Electrochem. Soc., 143, 2670–2673 (1996).
- [9] N. Terasaki, C. N. Xu et al., *Chem. Commun.*, 47 (2011).
- [10] F. Clabau et al., *Chem. Mater.*, 17 [15], 3904 (2005).
- [11] J. Ueda et al., Phys. Stat. Soli. c, 9, 2322-2325 (2012).
- [12] T. Nakanishi, J. Ceram. Soc. Jpn., 123, 862-867 (2015).