結晶性ナノ粒子分散液からの均一薄膜コーティングと エレクトロクロミズム

大阪府立大学大学院工学研究科

徳留 靖明,竹本 晶紀

Homogeneous coating of colloidal suspension of nanocrystals on conductive glass substrate for enhanced electrochromism

Yasuaki Tokudome, Masanori Takemoto

Graduate School of Engineering, Osaka Prefecture University

1. はじめに

ガラスへの無機コーティングにゾルーゲル法 が広く用いられる。液相プロセスのアドバン テージは、その手軽さに加えて、有機-無機ハ イブリッド化が可能であることや3次元構造体 表面への成膜性に優れることである。一方で、 均質なゾルーゲル薄膜は、非晶質膜として成膜 されることが多い。結晶性コーティングを得る 際には、熱処理過程で膜面内に応力が蓄積し、 剥離や収縮に伴うクラックが生じるという問題 がある。¹ここで、結晶性ナノ材料を分散液と して「事前に」作製し、それを成膜することは 1つの解決策となりうる。また、結晶性ナノ材 料分散液を用いて熱処理を経ずに結晶膜を成膜 することができれば、高温環境下で不安定な結

〒 599-8531

 $E\text{-mail} \ \vdots \ tokudome@mtr.osakafu-u.ac.jp$

晶のコーティングを得ることもできる。本稿で は、筆者らがこれまでに報告してきた濃厚分散 系結晶性ナノ粒子の合成を概観し、これを用い た導電性基板上への薄膜作製とエレクトロクロ ミック(EC)材料への応用を紹介したい。

2. ナノ結晶性粒子濃厚分散液

セラミックス粒子濃厚分散液の合成法とし て、杉本らによって報告されたゲル-ゾル法が 広く知られている。²ゲル-ゾル法では、水熱処 理による前駆体ゲルの溶解と再析出が反応の駆 動力であり、TiO₂をはじめとした酸化物粒子の 濃厚分散液の合成が報告されている。私たちは、 これとは異なるアプローチで無機ナノ粒子分散 液の合成を報告してきた。³この手法では、反応 が室温で進行するため、酸化物に加えて水酸化 物ナノ粒子を濃厚分散液として得ることが可能 である(図1)。紙面の都合上本稿では粒子合成 の詳細は割愛するが、室温環境下のワンポット 合成で結晶性ナノ粒子の濃厚分散液(>数+g/ L)を種々の組成系で得ることができる(表1)。

大阪府堺市中区学園町 1-1 TEL 072-254-9323 FAX 072-254-9912 (分野事務室)

3. 結晶性薄膜コートとエレクトロクロミズム

上述のナノ結晶性濃厚分散液を利用して EC 材料を作製した例をここでは紹介したい。⁴EC 材料とは、電圧印加に応じて光学特性が可逆的 に変化する材料であり、スマートウィンドウな どの電気デバイスに利用される。EC 材料とし て WO₃ や NiO などの無機材料や PEDOT:PSS などの導電性ポリマーといった様々な材料が知 られている。今回は、Ni-Al 系層状複水酸化物 (LDH)をベースとした EC 材料に着目した。こ の材料は Ni²⁺ と Ni³⁺ の酸化状態の可逆的な変 化を示す EC 材料として報告されている。⁵

EC 反応において,導電性ガラス基板と色調 変化を担う EC 材料(層)との間で電荷の授受 が起こる。そのため,EC 材料の導電性ガラス 基板上への成膜性は重要なポイントとなる。

一般的な LDH は液相法の一種である共沈法 よりに合成され,数百 nm 以上の粗大結晶や凝 集体の粉末として得られる。このような材料を 導電性ガラス基板上に均質に製膜することは困 難である。一方で,筆者らが合成した Ni-Al 系 LDH は,直径約8 nm の LDH ナノ結晶が分散 安定なコロイド溶液として得られる(図1)。こ のような安定なコロイド溶液は,スピンコート やディップコーティングにより,導電性ガラス 基板上への結晶性薄膜の作製に利用できる。

図 1 ナノ粒子分散液 (Ni-Al 系 LDH) の写真。アメ リカ化学会 (ACS) の許可を得て ACS Nano 2016, 10, 5550-5559 より転載

LDH 薄膜は FTO ガラス 基板上に厚さ30 nm ほどの均質な膜として成膜可能である(図 2a)。LDH 薄膜の膜厚は、結晶粒子濃度・溶媒・ スピンコート回転速度などを調整することで数 nm~数百 nm の範囲で制御することができる。 得られた薄膜は、微細なナノ粒子により構成さ れる緻密膜であり高い透明性を有する(透過率 = 98% @ 400 nm)(図 2b)。

表1 本手法で合成可能なナノ水酸化物・酸化物粒子 分散液

組成系	粒子径 /	引用
	nm	
NiAl LDH	8	6
CoAl LDH	10	7
LiAl LDH	8	8
ZnAl LDH	70	9
$\label{eq:a-M_comparison} \begin{bmatrix} \alpha\text{-}M ~(\text{OH})_2 ~(\text{M} = \text{Mn (II}), \text{Fe (II)}, \\ \text{Co (II)}, \text{Ni (II)}, \text{Cu (II)}), \end{bmatrix}$	2-3	10
(hydr)oxides: Al (III), Cr (III), Fe (III), Zr (IV), and Sn (IV)	—	10
NiGa ₂ O ₄	4	11

図2 FTO ガラス基板上に成膜した Ni-Al 系 LDH 薄膜の (a)断面 SEM 像および (b)外観写真。(c) Ni-Al 系 LDH 薄膜に対するサイクリックボルタンメトリー測定結果。アメリカ化学会 (ACS)の許可を得て ACS Appl. Nano Mater. 2020, 3, 6552-6562より転載

NEW GLASS Vol. 36 No. 133 2021

LDH 薄膜に対するサイクリックボルタノメ トリ- (CV) 測定結果を図 2c に示す。印加電 圧を0Vから12Vへと連続的に変化させた場 合.0.8 V付近から電流値の増加が見られる。こ の電流値の増加は LDH に含有されるニッケル イオンの酸化反応 (Ni²⁺ → Ni³⁺ + e) のためで ある。図 2c 内の写真が示すように、この酸化反 応に伴い LDH 薄膜が透明から黒色へと変化す ることが肉眼でも確認できる。また.1.2 Vから 0 Vへと印加電圧を逆向きに変化させると、 LDH 薄膜は黒色から透明へと変化する。この色 調変化の際、CV 測定結果においてはニッケル イオンの還元反応(Ni³⁺ + e → Ni²⁺)が起こり 負の電流が観測される。CV 測定におけるニッ ケルイオンの酸化還元反応は数十サイクル後も 安定して観測され,サイクル試験中に LDH 層 が導電性ガラス基板から剥がれることもない。 このように、ナノ結晶性粒子濃厚分散液を「結 晶性インク」として利用することで、 安定かつ 可逆的に EC 反応を示す LDH 薄膜が作製でき る。

ここで強調すべき点は、結晶性粒子のナノ微 細性と高い成膜性は、薄膜の高い光透過性と高 い酸化還元反応活性につながるということであ る。これにより、類似材料系と比較して大きく (Δ T= 70%),高速な (on/off スイッチ) 色調変 化が実現できる。以上、ナノ結晶性粒子濃厚分 散液の利用は、液相製膜技術に関する課題を克 服する手助けとなり、高い活性を示す EC 材料 の創製に繋がる。

4. おわりに

本稿では、ナノ粒子濃厚分散系の構築とその コーティング膜が示す EC 特性評価を紹介し た。水酸化物ナノ粒子分散液は有機分子とのハ イブリッド化のみならず、金属、金属有機構造 体 (MOF)、金属硫化物へとコンバージョンす ることも可能である。さらには、両親媒性高分 子の自己組織的駆動力を利用してメソ多孔化す ることもできる。¹²これらの材料合成技術を融 合することで多様な結晶性コーティングとそれ を利用した応用展開が期待できる。

謝辞

本研究は日 - 仏二国間交流事業(JSPS-CNRS) の助成を受けて行われたものである。

参考文献

- H. Kozuka, in Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications, 2018, DOI: 10.1007/978-3-319-32101-1_12, pp. 275-311.
- T. Sugimoto, J. Colloid Interface Sci., 2007, 309, 106-118.
- 3. Y. Tokudome, J. Ceram. Soc. Jpn., 2017, 125, 597-602.
- P. Koilraj, M. Takemoto, Y. Tokudome, A. Bousquet, V. Prevot and C. Mousty, *ACS Applied Nano Materials*, 2020, 3, 6552-6562.
- J. Martin, M. Jack, A. Hakimian, N. Vaillancourt and G. Villemure, *J. Electroanal. Chem.*, 2016, 780, 217-224.
- Y. Tokudome, T. Morimoto, N. Tarutani, P. D. Vaz, C. D. Nunes, V. Prevot, G. B. G. Stenning and M. Takahashi, *Acs Nano*, 2016, **10**, 5550-5559.
- D. Kino, Y. Tokudome, P. D. Vaz, C. D. Nunes and M. Takahashi, *Journal of Asian Ceramic Societies*, 2017, 5, 466-471.
- 8. M. Takemoto, Y. Tokudome, H. Murata, K. Okada, M. Takahashi and A. Nakahira, *Appl Clay Sci*, 2021, **203**.
- S. Murai, Y. Tokudome, R. Katsura, H. Sakamoto, K. Noguchi, M. Takahashi and K. Tanaka, ACS Applied Nano Materials, 2020, 3, 5838-5845.
- N. Tarutani, Y. Tokudome, M. Jobbágy, F. A. Viva, G. J. A. A. Soler-Illia and M. Takahashi, *Chem. Mater.*, 2016, 28, 5606-5610.
- M. Takemoto, Y. Tokudome, H. Murata and A. Nakahira, *Journal of the Society of Materials Sci*ence, Japan, In Press.
- N. Tarutani, Y. Tokudome, M. Jobbágy, G. J. A. A. Soler-Illia, Q. Tang, M. Müller and M. Takahashi, *Chem. Mater.*, 2019, **31**, 322-330.