いまさら聞けないガラス講座

機能性材料の絶対発光量子収率測定

浜松ホトニクス(株) システム事業部

渡邉 裕彦

Absolute photoluminescence quantum yield measurement of functional materials.

Hirohiko Watanabe

Systems Division, Hamamatsu Photonics K.K.

1. はじめに

超薄型有機 EL ディスプレイや LED 照明の 急速な普及は、デバイスの高効率化による低消 費電力化の実現により加速し、今や我々の日常 生活の中にますます浸透してきている。これら のデバイスの高効率化においては、その材料の 発光効率を精密に評価し、改善することが最も 重要な要素の一つであり、我々がその指標であ る発光量子収率の測定装置を開発するきっかけ となった。ここで言う材料の発光とは、材料に 励起光を照射した際に発せられる発光 (Photoluminescence : PL)のことを指す。

2. 発光量子収率測定の原理

発光量子収率は,材料に吸収されたフォトン 数に対する発光フォトン数の割合として定義さ れる。測定法は,大きく相対法と絶対法に大別

〒431-3196 静岡県浜松市東区常光町 812 番地 TEL 053-431-0150 FAX 053-433-8031 E-mail: hirohiko@sys.hpk.co.jp されるが,相対法においては比較用の基準物質 が必要で,適用範囲が溶液試料に限られるのに 対し,絶対法は試料の吸収と発光から直接発光 量子収率を算出するので,基準物質が不要,ま た,固体,液体,粉末など様々な形状の試料に 対応可能という利点がある。発光デバイス用の 材料においては,デバイスに応じて様々な試料 形状での評価が不可欠であり,装置化には絶対 法の採用が鍵であった。

我々が開発した絶対 PL 量子収率測定装置の 例を図1に示す。

測定装置は,励起光源,積分球,高感度マル チチャンネル分光器により構成される。マルチ チャンネル分光器を積分球と組み合わせた状態 で,分光感度を厳密に校正し,積分球内の試料 に励起光を導入して測定は行われる。これによ り,励起光および材料から放出された発光のス ペクトルが正確に測定される。リファレンス測 定として,積分球にサンプルを入れない状態の 容器をセットして励起光のスペクトルが測定さ れ,続いてサンプルを充填した容器を積分球に セットして,励起光とサンプルの発光スペクト ル測定が行われる。これらのスペクトルデータ

図1 絶対 PL 量子収率測定装置(左:初期モデル、右:最新モデルの Quantaurus-QY Plus)

を用いて,図2に示す式により,吸収および発 光フォトン数を求めることにより,発光量子収 率(Φ_{PL})が算出される。

3. 妥当性の確認

表1に,代表的な蛍光標準溶液の発光量子収 率測定結果,および,文献値を示した¹⁾。殆ど の物質において測定値と文献値の良い一致が得 られ,本法の妥当性が確認された。

高効率発光デバイス用の材料評価を目的に開 発した絶対 PL 量子収率測定装置であったが、 その応用範囲の広さから、有機 EL, LED に代 表される発光デバイス用発光材料開発に限ら ず、太陽光発電用材料やバイオプローブ、有機、 無機化合物の基礎物性研究、近年ではペロブス カイト材料や量子ドットなど,時代を反映した 材料評価に広く用いられるようになり,試料形 状も溶液に限らず,ガラス基板に塗布された薄 膜,フィルムなどの固体,粉末,粒子,コロイ ドなど多岐に渡るようになった。また,高量子 収率なものから低量子収率なものまでを様々な 波長条件で評価したいという希望も多く寄せら れた。

4. 低量子収率測定,近赤外測定への応用

しかし,我々が最初に開発したシステムにおいては、マルチチャンネル分光器の検出器である裏面照射型 CCD リニアイメージセンサ(以下,BT-CCD)の飽和電荷量によって、吸収可能なフォトン数が制限されるため、例えば1%

図2 発光量子収率の測定原理

表1 代表的な蛍光標準溶液の量子収率値

化合物	溶媒	濃度(M)	励起波長 (nm)	$\Phi_{PL}(\texttt{A}\texttt{E})$	Φ_{PL} (文献値) ¹⁾
naphthalene anthracene 9,10-diphenylanthracene 1-aminonaphthalene N.N-dimethyl-1-aminonaphthalene quinine bisulfate fluorescein	シクロへキサン エタノール シクロへキサン シクロへキサン シクロへキサン 1N H ₂ SO ₄ 0.1N NaOH	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	270 340 355 300 300 350 460	$\begin{array}{c} 0.23 \pm 0.01 \\ 0.28 \pm 0.02 \\ 0.97 \pm 0.03 \\ 0.48 \pm 0.02 \\ 0.011 \pm 0.002 \\ 0.52 \pm 0.02 \\ 0.60 \pm 0.02 \\ 0.88 \pm 0.03 \end{array}$	$\begin{array}{c} 0.23 \pm 0.02 \\ 0.27 \pm 0.03 \\ 0.9 \pm 0.02 \\ 0.465 \\ 0.011 \\ 0.508 \\ 0.546 \\ 0.87 \end{array}$
tryptophan	H ₂ O (pH 6.1)	1.0×10^{-4}	270	0.15 ± 0.01	0.14 ± 0.02

以下の低量子収率の測定は困難であった。そこ で、試料により多くの励起光が吸収されるよう に広帯域のバンドパスフィルタを用い、ブロー ドな光を励起光として用いることで、吸収フォ トン数が増え、低量子収率測定が可能になった。

また, BT-CCD の採用により 200 nm~の高感 度計測が実現されたが,センサである Si の感度 により長波長側の測定限界は,1.1 μm までに限 定されていた(図3a)。しかし近年,さらに長波 長で発光する材料評価への要望が増し,我々は 新たなセンサの採用による長波長化を検討した。 InGaAs は,図3bに示すような分光感度を有す る検出器である。これとBT-CCD と組み合わせ て使用することにより,200 nm~1650 nm まで の広い波長範囲における測定が可能になった。

図4は, platinum (II) meso-tetra (pentafluo rophenyl) porphine を増感剤として用い,一重 項酸素の発光量子収率を測定したものである。 励起波長は,中心波長 525 nm,半値全幅 50 nm のバンドパスフィルタを用いて波長選択した。

1270 nm の InGaAs 感度領域にピークを持つ一 重項酸素の発光量子収率を様々な溶媒中で高感 度に測定することに成功した²⁾。

5. まとめと今後の展開

浜松ホトニクスでは,様々な形状,様々な発光 波長,発光量子収率を持つ各種機能性材料の評 価要求に応えるため,絶対発光量子収率測定装 置の開発,改良に取り組んでいる。最新モデル Quantaurus-QY Plus では,本稿で紹介したブ ロードバンド励起による低量子収率の評価や近 赤外対応機能が採用されているほか,近年注目 されているアップコンバージョン材料の発光量 子収率測定³⁾をレーザ励起により行うことも可 能である。また,試料の温調や励起密度依存性 の評価など,さらなる高機能化への対応にも常 に取り組んでいる。今後は,さらなる高精度化 やウエーハ試料への対応など改良に努めていく 予定である。

参考文献

- K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, *Phys. Chem. Chem. Phys.*, 11, 9850 (2009).
- 2) N. Hasebe, K. Suzuki, H. Suzuki, T. Yoshihara, T. Okutsu, and S. Tobita, *Anal. Chem.*, 87, 2360 (2015).
- 3) N. Yanai, K. Suzuki, T. Ogawa, Y. Sasaki, N. Harada, N. Kimizuka, *J. Phys. Chem. A*, 123, 10197 (2019).