特 集 アパタイト(リン酸カルシウム)材料の応用

生体無機組織形成に倣う ヒドロキシアパタイトカプセルの創成

京都大学 大学院エネルギー科学研究科

薮塚 武史

Development of Hydroxyapatite Capsules Mimicking Bioinorganic Tissue Formation

Takeshi Yabutsuka

Graduate School of Energy Science, Kyoto University

1. はじめに

骨の主要な無機成分であるヒドロキシアパタ イト(HA: Ca₁₀(PO₄)₆(OH)₂)は、生体組織 や細胞との親和性が極めて高く、人工骨や骨補 填剤などの骨修復材や、細胞培養のための 3D スキャホールド等に応用されている。さらに、 HA はタンパク質、酵素、核酸等とも高い親和 性を有することから、セラミックバイオマテリ アル研究において最も重要な物質の一つとして 位置づけられる。このような魅力的な物性を具 備する HA をカプセル状に成型し、内部に種々 の機能性物質を内包することができれば、薬物 や遺伝子のデリバリー機能や、高効率な環境浄 化機能を具備した、画期的な機能性微粒子の開 発につながる。本稿では、筆者らが近年取り組

〒 606-8501

京都市左京区吉田本町 TEL 075-753-9129

FAX 075-753-9115

E-mail: yabutsuka@energy.kyoto-u.ac.jp

んでいる,常温常圧の水溶液法をベースとした 生体模倣プロセスによる HA カプセルの開発 について紹介する。

アパタイト核」のHA形成能に着目した生体活性材料設計

体内で骨と結合し一体化する「生体活性セラ ミックス」の多くは、体内でその表面に HA の 層を形成し、この HA 層を介して骨と結合する ことが知られている。このような、生体内にお ける材料表面での HA 形成能の発現は、多くの 場合、ヒトの血漿とほぼ等しい無機イオン濃度 に調節した水溶液である擬似体液(SBF)^[1]に 材料を浸漬することでも再現される。しかし、 HA 形成能を有する材料は、Bioglass^{® [2]} や HA 焼結体^[3]、結晶化ガラス A-W^[4] など、基本的 にごく一部のセラミックスに限られている。

SBFのpHを上昇させると、溶液中にリン酸 カルシウムの微粒子が析出する。八尾らは、こ の微粒子が体液模倣環境下で早期にHA形成 を誘起することを見出し、この微粒子を「アパ NEW GLASS Vol. 36 No. 134 2021

タイト核」(AN)と名付けた^[5]。さらに筆者ら は、細孔を有する基材の表面近傍に AN を担持 させることで、多種多様な基材に高い HA 形成 能を付与できることを見出し^[6]、ステンレス鋼 ^[7]、Co-Cr 合金^[8]、イットリア安定化ジルコニ ア^[9]、ポリエーテルエーテルケトン^[10]等の生 体不活性な材料に、短期間で発現する高い HA 形成能を付与することに成功している。これら の知見は、AN を用いた HA 形成能付与が、金 属、セラミックス、ポリマーに至る幅広い基材 選択性を有することを示唆している。さらに、 一部の材料については動物実験を進めており、 材料が良好な骨結合能を発現することを明らか にしている^[11]。

3. 生体無機組織形成に倣う HA カプセ ル形成プロセス

ANを用いた HA 形成能付与は,基材の種類 選択性だけでなく形状選択性にも優れており, 微粒子にも適用が可能である。コアとなる微粒 子に AN を担持させ,これを SBF に浸漬する と, 微粒子に担持した AN が HA 形成を誘起す る。その結果,コア微粒子を HA で内包した HA カプセルを作製することができる(図1)^[12]。 本手法は,生体無機組織形成を模倣した常温常 圧下の水溶液プロセスであり,高温高圧処理を 必要としない。そのため,医薬品や遺伝子など, 熱で変性しやすい物質を HA カプセルに内包 することも可能である。

図1 生体模倣反応を利用した HA カプセルの作成フ ロー.

4. 固体微粒子内包 HA カプセル

筆者らは、平均粒径1.71 µmの銀微小球に AN を担持させ、SBF に浸清すると、銀微小球 が球体の形状を保ったままHAの鱗片状結晶 で完全に被覆されることを明らかにした^[13](図 2 (a))。SBF 中で形成される HA は無数の鱗片 状結晶の集合体で構成されており、多孔質様の 形状を有する。したがって、内包されたコア物 質は外殻のHA が形成する空隙から徐々に放 出され、徐放性を示すと考えられる。そこで、 銀微小球内包 HA カプセルからの銀の放出挙 動をリン酸緩衝生理食塩水(PBS)中で検証し たところ、銀の放出量は未処理銀微小球の約 1/10 に抑制され、徐放性を示すことがわかった (図2(b))。さらに筆者らは、本手法がレボチ ロキシン微粒子^[14]やシリカゲル微小球^[15]を内 包した HA カプセルの作製にも適用可能であ ることを見出しており、金属、セラミックスか らポリマーに至る各種微粒子の内包に有効であ ることを明らかにした。

図2 (a) 銀微小球内包 HA カプセルの走査型電子顕 微鏡 (SEM) 写真. (b) PBS 中における,未処 理銀微小球もしくは銀微小球内包 HA カプセル からの銀放出率変化.

5. 軟物質内包 HA カプセル

上述の HA カプセルは固体微粒子のみなら ず,やわらかい物質を内包することも可能であ る。油脂やヒドロゲルに薬物を担持させ,これ を HA で被覆すれば,薬物が持続的に放出され るのみならず,液状の物質を固形物として取り 扱うことも可能となるため,ハンドリングに優 れる薬物担体の開発につながる。

例えば、ANを担持したコーン油エマルショ ンを 1.5SBF (SBF の 1.5 倍の無機イオン濃度を 有する水溶液)に浸漬することで、コーン油エ マルションを内包した HA カプセルを形成す ることができる(図3(a))^[16]。親油性薬剤の モデル物質としてイブプロフェンをエマルショ ンにあらかじめ含有させておくと. HA カプセ ルは内部のイブプロフェンを一気に放出せず. 徐々に放出する(図3(b))。また、HAカプセ ルに内包するコア物質としては、コーン油のよ うな疎水性高分子のみならず、親水性高分子も 適用可能であり、筆者らはアガロースヒドロゲ ルを内包した HA カプセルにも本手法が有効 であることを実証している(図3(c))^[17]。以 上の知見から、本手法が固体微粒子の内包のみ ならず、油脂やヒドロゲルのような軟物質にも 適用可能であることが示唆された。

図3 (a) コーン油エマルションを内包した HA カプ セルの SEM 写真.(b) 緩衝溶液中におけるコー ン油エマルション内包 HA カプセルからのイブ プロフェン放出率変化.(c) アガロースヒドロ ゲル内包 HA カプセルの SEM 写真.

磁性 HA カプセルによる酵素の高効 率回収

筆者らは、HAを高効率な固定化酵素担体と して用いることを目的として、磁性微粒子を HA に内包した磁性 HA カプセルの作製に着手 している。酵素と高い親和性を有する HA のカ プセルが磁性を示すことにより、HA カプセル の表面に固定化した酵素を磁場により水溶液中 から回収することが可能である(図 4)。

ー例として筆者らは、マグへマイト(γ -Fe₂O₃) 微粒子を内包した磁性 HA カプセルを 作製している^[18]。磁性 HA カプセルの酵素回収 能を検証するため、磁性 HA カプセルをウレ アーゼ溶液に分散させてウレアーゼを表面に固

図4 磁性 HA カプセルを用いた固定化酵素技術の概 略図.

図5 (a) ウレアーゼ 25 mg もしくは 50 mg を分散した 水溶液中における,ウレアーゼ回収量の磁性 HA カプセル添加量依存性.(b)ウレアーゼ 0 mg,ウ レアーゼ 10 mg,もしくはウレアーゼ 10 mgを固 定化した磁性 HA カプセルを分散した尿素水溶液 中における,ニコチンアミドアデニンジヌクレオチ ドリン酸(NADPH)の吸光度変化.吸光度が低 いほど尿素分解が進行していることを示している.

定化後,カプセルをネオジム磁石で回収し,ウ レアーゼ回収量を調べた。その結果,添加カプ セル量の増加に伴ってウレアーゼ回収量は増加 し,ほぼ全量のウレアーゼが回収されることが わかった(図5(a))。さらに,カプセルに固定 化したウレアーゼの酵素活性を調べるため,ウ レアーゼ・L-グルタミン酸脱水素酵素法により 尿素分解試験を行ったところ,時間経過に伴い ほぼ完全に尿素を分解し,固定化後においても ウレアーゼは良好な尿素分解能を示すことがわ かった(図5(b))。

7. おわりに

生体模倣環境で HA 形成を高活性に誘起す る AN を用いることで,種々の生体不活性材料 への HA 形成能付与が可能となる。基材の種類 選択性ならびに形状選択性の広い本手法を応用 し,固体微粒子や軟物質,さらには磁性物質の HA カプセルへの内包が可能である。今後,種々 の機能性物質と,生体親和性に優れる HA をミ クロンスケールで融合させる本手法を発展さ せ,従来にない新たな機能の創出へと展開して いくことが期待される。

謝辞

本稿の研究の一部は,京都発革新的医療技術研究 開発助成事業,関西エネルギー・リサイクル科学研 究振興財団研究助成,および大倉和親記念財団研究 助成のご支援により遂行した。

参考文献

- T. Kokubo, H. Takadama, *Biomaterials*, 27, 2907-2915 (2006).
- [2] L.L. Hench et al., J. Biomed. Mater, Res. Symp., 2, 117-141 (1971).
- [3] M. Jarcho et al., J. Bioeng., 1, 79-92 (1977).
- [4] T. Kokubo et al., Bull. Inst. Chem., Kyoto Univ., 60, 260-268 (1982).
- [5] T. Yao et al., US Pat. 8178066 (2012), JP Pat.
 5261712 (2013).
- [6] T. Yao, M. Hibino, T. Yabutsuka, US Pat. 8512732 (2013), JP Pat. 5252399 (2013).
- [7] T. Yabutsuka et al., Materials, 11, 1334 (2018).
- [8] T. Yabutsuka et al., Trans. Mat. Res. Soc. Japan, 43, 143-147 (2018).
- [9] H. Zamin et al., Materials, 13, 3045 (2020).
- [10] T. Yabutsuka et al., Mater. Sci. Eng. C, 81, 349-358 (2017).
- [11] K. Masamoto et al., Acta Biomater., 91, 48-59 (2018).
- [12] T. Yabutsuka, Recent Advances in Porous Ceramics, U. Basheer (eds.), InTechOpen, London, pp.11-29.
- [13] T. Yabutsuka et al., Key Eng. Mater., 361-363, 709-712 (2008).
- [14] T. Yabutsuka et al., Key Eng. Mater., 758, 172-177 (2017).
- [15] S. Yamane et al., Key Eng. Mater., 396-398, 519-522 (2009).
- [16] T. Matsunaga et al., Key Eng. Mater., 720, 12-16 (2017).
- [17] H. Nakamura et al., *Phosphorus Res. Bull.*, 31, 9-14 (2016).
- [18] T. Yabutsuka et al., J. Ceram. Soc. Japan, 128, 883-889 (2020).