やさしいニューガラス講座

光学材料の先進超精密加工プロセス

~ナノ精度を目指す ELID 研削、超平滑研磨、超精密切削~

大森 整、林 偉民、森田晋也、片平和俊、上原嘉宏、渡邊 裕

Advanced Ultraprecision Machining Process of Optical Materials

-ELID-Grinding, Ultra-Smooth Polishing, Ultraprecision Cutting to Target at Nanoprecision-

Hitoshi Ohmori, Weimin Lin, Shin – ya Morita, Kazutoshi Katahira,

Yoshihiro Uehara, and Yutaka Watanabe

RIKEN (The Institute of Physical and Chemical Research)

はじめに

光学素子・光電子デバイスを心臓部とするオ プト技術は、我が国の最先端技術の競争力の源 流となっている.特に、これらのデバイスの多 くはガラスなどの硬質・脆性材料からなり,超 精密加工プロセスの進歩がキーとなっている. 中でも,古くからガラス加工に使用されてき た,砥石を用いた研削加工は,ガラスに対して ナノレベルの鏡面を創成する鏡面研削へと進化 し、さらに形状と粗さの両立を実現する磁性流 体研磨(MRF)などの超平滑研磨との連携技 術へと進化している. 「ELID (エリッド)」研 削法は、専用加工システムの実用に伴い、 ガラ スの超精密加工プロセスの主流として、大型光 学素子から特殊光学素子まで,用途拡大を続け ている.また、切削加工によるガラスなどの回 折格子の加工の試みも進められている.本稿で は、1)(ELID)研削法を中心に、2)研磨加 工法,3)切削加工などの,最近のガラスの新 しい超精密加工プロセスについて紹介する.

〒351-0198 埼玉県和光市広沢 2-1 独立行政法人理化学研究所 TEL 048-462-1111 FAX 048-462-4637 E-mail:ohmori@mfl.ne.jp

- 1. ELID 研削法
- 1.1 ELID 法の原理

研削加工は, 砥粒(研磨剤)を結合させ製作 された工具である砥石によりガラスを削り取る 加工法であり, 古くから光学部品の加工に使用 されてきた. ELID 研削法は、メタルボンド (ダイヤモンド砥粒) 砥石に電解インプロセス ドレッシング (ELID=Electrolytic In-process Dressing) を 複合して 実現された 高精度かつ 高 効率な研削加工法である(図1).これは、電 解により砥石の結合材(メタルボンド)のみを 溶出除去させることで、ドレッシング(目立 て)を確実ならしめ、また加工しながらも砥石 の切れ味を維持することにより、微細砥粒を持 つ砥石の持続的適用を可能にした世界初の技術 である. ガラスなどの硬脆材料の超精密加工に 適し,砥石によるガラスの実用鏡面研削を実現 した初めての加工プロセスと言える.この電解 ドレッシングには、電解による目立ての強度を 調整し易くするために、パルス波形を発生する 電解電源や水溶性研削液を組み合せて、図2に 示すメカニズムを実現している.この電解現象 では、ボンド材が一定量溶出後、速やかに不導 体被膜(水酸化鉄/酸化鉄)による絶縁層が砥

独立行政法人理化学研究所

石面に形成され,過度の溶出を防止する.この 状態から研削加工を開始後,被加工物がこの不 導体被膜に接触し,砥粒が摩耗した分だけ被膜 が剥がれる.これに伴い,被膜による絶縁が低 下し,再度一定量ボンド材が溶出し砥粒突出が 維持される.

1.2 ELID 法の適用方式

ELID 法は、①砥石、②電源、③電極の装着 により容易に実現でき、粗加工から仕上げ加工 に広く適用できる.平均粒径約4µm(# 4000)以下の砥粒を持つ砥石により、ガラスな どに対しても研削加工のみにより鏡面が得られ る.この場合、鏡面を実現できることから、特 に「ELID 鏡面研削」と呼ぶ.ELID 研削は、 所望の①加工面形状、②加工面精度、③加工能 率などの要求から、必要な加工方式や機械シス テムが選定できる.図3にはその代表例とし て、ガラスディスクなどの平面加工と非球面レ ンズなどの加工方式を示す.

1.3 ELID 法の鏡面研削効果

BK7光学ガラスや単結晶シリコンなどで は、#4000(平均粒径約4 μ m)~#8000(同 約2 μ m)鉄系ボンドダイヤモンド砥石によ りRy30~60 nm, Ra4~6 nmのELID研削 面粗さが得られ、さらにセラミックスなどでは Ry20~30 nm以下の良好な研削面も達成され ている(図4).#4000鉄系ボンドダイヤモン ド砥石による代表的なELID鏡面研削面性状を 図5に示す.いわゆる延性モード研削面が得ら れている.後述するように、ELID法では# 8000以上の微細な砥粒を持つ砥石を適用する ことで、一層高品位な研削面を得ることができ る.

図 5 ELID 鏡面研削面性状

1.4 ELID 鏡面研削事例

図6に、ガラスなどのELID 鏡面研削事例を 示す.これまでに、光学ガラス、単結晶シリコ ンやゲルマニウム、セラミックス、超硬合金や 鋼材などが加工されており、さまざまな工程で 実用化が進んでいる.近年、ELID 研削により GRIN 非球面レンズなどの特殊光学素子の試作 加工もなされている.GRIN レンズは屈折率が 傾斜したガラス材により、さらなる形状を付与 しレンズ枚数の削減や光学性能の向上などの効 果が期待されている.一般にGRIN レンズに は、図7に示すアキシャル型とラジアル型があ るが、ここではラジアル型 GRIN レンズの放物 面形状のELID 研削を行った(図8).

(e) ガラス変曲点付非球面レンズ (f) フレネルレンズ

図 6 ELID 鏡面加工事例

図 8 ELID 鏡面研削された非球面 GRIN レンズ

1.5 ELID 研削システム

ELID による粗研削から鏡面研削に至る各作 業性や効率・安定性を確保するために,① ELID 専用砥石,電極,電源,研削液,②

(a) ロータリー研削盤

(b)成形平面研削盤

(c)ラップ研削盤

(d) 非球面加工機

(e)デスクトップ加工機

図 9 ELID 研削システムの実用例

ELID 専用加工機による専用システムが開発さ れている(図9).また、光学ガラス、単結晶 シリコン、水晶などの鏡面研削には、CeO₂や SiO₂などの砥粒を有する特殊な ELID 研削用砥 石の効果も確認されている.専用 ELID 研削シ ステムを積極的に利用することによって、これ までにさまざまな光学部品の超精密加工が実用 化されている.

1.6 大型光学素子開発例

産業界ならびに科学技術分野において、大型 光学素子のニーズが高まっている.特に先端光 科学分野においては、X線機器開発があり、超 精密な形状精度と極限の平滑性を有した斜入射 反射鏡(ミラー)の開発が不可欠となる.中で もシンクロトロン用にはシリンドリカルミラー やトロイダルミラーが, X線望遠鏡の結像光学 系には、放物面と双曲面が複合されたウォル ターミラーが用いられる.筆者らが開発した 10 nm 分解能を有する大型非球面加工機を用い て,これらの大型光学素子の実用開発が進めら れている. 1000 mm シンクロトロンミラーを 図 10 に、中性子ミラーの事例を図 11 に示す. 他にも、天文用レンズ・ミラー開発への適用も 進められている (図 12,13). 図 14 は, さらな る精度を目指し、加工機上での計測による加工 精度の補正作業の様子を示す.

図 10 シンクロトロンミラー加工例

図11 中性子ミラー加工例

図 12 大型ミラーセグメント加工例

図13 大口径非球面レンズ加工例

図 14 形状精度補正

2. 研磨加工法

2.1 ラップ研削

前述の ELID 法を利用してサブミクロンの超 微細砥粒砥石による超平滑鏡面研磨加工: ラッ プ研削が実現されている(図 15).本法は,定 盤型のメタルボンド砥石を用い,定圧力の研削 方式により超微細砥粒も有効に適用できる.本 加工法の適用として,光学材料に対して# 30000(約 0.5 μ m), #60000(約 0.3 μ m), # 120000(約 0.1 μ m)による各種硬脆材料の鏡 面加工が行なわれている. #3000000(平均粒 径約 50 オングストローム)メタルボンド砥石 を用いた超平滑鏡面加工によって, Ry 1~2 nm, Ra 2~3 オングストロームの研削面が 実現できるようになった(図 16).

図 15 ELID ラップ研削の原理

図 16 ELID ラップ研削面粗さ

2.2 磁性流体研磨(MRF)

光学部品に求められるナノレベルのプロファ イルと粗さの両立を狙って,磁性流体研磨 (MRF)法(図17)の適用効果が検証されて いる.加工ツールとなる磁性流体の中に砥粒 (主にダイヤモンド,酸化セリウム)を配合し, 磁界により研磨圧力を付与することで研磨に供 する. 回転し磁化されたホイールに磁性流体を 吐出すると,磁性流体がホイール表面に固着さ れホイールと共に連れ回りを起こす. その際, NC プログラムにより被加工物とホイール間の 隙間を制御することによって,必要な研磨加工 が行える.また、ホイールの連れ回りと共に、 磁場を離れた磁性流体は再び流動化し、吸引回 収・循環され使用される.図18に加工システ ムの主要部を示す. 基本的な効果を検証するた めに、ELID 研削後の石英材を用い、MRF を 施したところ、短時間でrms:25 nmから rms:0.3 nm まで仕上げることができた(図 19). 形状精度は、素材やサイズ、形状にもよ るが、λ/18~28 (λ=632.8 nm) が得られて いる (図 20). レーザー用ミラー材である SiC に対しては、初期粗さrms: 232.7 nmから rms: 3.6 nm まで改善できた.

図 17 MRF 法の原理

図 18 ガラスの MRF の様子

図 19 MRF による仕上げ面性状

図 20 MRF による仕上げ面形状精度例

3. 切削加工法

単結晶ダイヤモンドバイトを用いて、ガラス 材などの光学材料,脆性材料の超精密切削加工 が試みられている.ELID 法などによる鏡面研 削では対応が難しい,極微細かつ急峻な形状を 有する回折格子などの加工を狙い,MgF₂基板 の切削加工事例を紹介する。図 21 のように, シェーパ加工方式を採用して、1 mm あたり 35 本の溝本数を持つ回折格子の加工を行ったとこ ろ,図 22,23 のように,良好な加工事例が得ら れた.深さは約 213 μ m である.加工面粗さ は,概ね Ra 4 nm 以下が得られた.また,近 年,さまざまな応用分野が期待されている金属 ガラスに対しても同様の切削加工により,回折 格子の加工が試みられている(図 24).

図 21 シェーパ加工方法

図 22 切削加工された回折格子の様子

図 23 切削加工された回折格子の形状データ

図 24 金属ガラスの回折格子の形状データ

おわりに

本稿では、特にガラスなどの光学材料に対す る高精度仕上げ加工として実用化が進められて いる各種メカニカル加工技術を中心に解説し た. ELID 法を中心とする一連の超精密加工プ ロセスは、理化学研究所が保有する知的財産で あり、その実用に際しては広くライセンスを進 めるとともに、日本発独自技術として進展し、 世界に広がることを期待してやまない.なお本 稿の切削加工事例は、慶應義塾大学との共同研 究の成果であることを付記し謝意を表する.

参考文献

- H. Ohmori, and T. Nakagawa: Mirror Surface Grinding of Silicon Wafer with Electrolytic In-process Dressing, Annals of the CIRP, 39, 1 (1990), 329 -332.
- 2) 大森 整:超精密鏡面加工に対応した電解インプ ロセスドレッシング (ELID) 研削法,精密工学会誌, 59,9,(1993) 1451-1457.
- 3) H. Ohmori, and T. Nakagawa: Analysis of Mirror Surface Generation of Hard and Brittle Materials

by ELID (Electrolytic In-Process Dressing) Grinding

with Superfine Grain Metallic Bond Wheels, Annals of the CIRP, 44, 1 (1995), 287–290.

- 4) 大森 整:電解ドレッシングで超精密鏡面研削を 実現,日経メカニカル,541 (1999),80-85.
- 5) 大森 整: ELID 研削加工技術-基礎開発から実用 ノウハウまで--,工業調査会(2000).
- 6) H. Ohmori, et al : Development of Large Ultraprecision Aspheric Optics ELID-Grinder for Larger X-Ray Mirrors, International Progress on Advanced Optics and Sensors, (2003), 91–98.
- 7) H. Ohmori, et al: Nanoprecision Mechanical Fabrication for Optical Elements, Optifab, (2003), 12–15.
- 8) ELID 研究会ホームページ http://www.elid.ne.jp
- 9) ナノプレシジョン研究委員会 http://www.nano. ne.jp
- 10) 新世代加工システムホームページ http://www. nexsys.ne.jp
- 11) 渡邉 裕ら: 屈折率傾斜 (GRIN) 光学素子への ELID 研削加工の試み-第2報-,2004年度精密工学会秋季 大会学術講演会,(2004),767-786.
- 12) 林 偉民ら:磁性流体研磨法 (MRF) によるレン ズ金型の仕上げ,型技術,19,8 (2004),130-131
- S. Min, et al: Variation in Machinability of Single Crystal Materials in Micromachining, Annals of the CIRP, 55, 1 (2006).