磁場環境下における酸化物ガラス融液の挙動

株式会社オハラ

南川 弘行

Flow and stir behavior of oxide glass melt in high magnetic field HIROYUKI MINAMIKAWA OHARA INC.

1. はじめに

一般にSiなどの半導体単結晶の育成には, その融液に磁場を印加しながら引き上げる方法 が広く用いられている。その理由は,金属や半 導体のような電気伝導性の高い融液に磁場を印 加するとLorentz力が働き,融液の対流が抑制 され,育成結晶の高品質化が図られるからとの ことである。

一方,酸化物単結晶については酸化物融液が 電気伝導性に乏しいためその効果が期待できな いものと考えられていた。しかし,宮沢ら¹⁾は 磁場印加型酸化物単結晶引上げ装置を試作し, LiNbO₃, TiO₂及び Nd₃Ga₅O₁₂融液で融液の磁 場印加による影響について調べた。その結果, 融液対流の抑制効果は観測されず,むしろ対流 の増速現象を見出した。

そこで,我々は同じ酸化物融液である酸化物 ガラス融液においてはどのような挙動を示すの か興味を持った。酸化物ガラス融液においても 磁場印加によって同様の対流変化が起これば, いまだガラス製造工程で種々の問題を抱えてい るガラス融液の攪拌に新たな方法が見出せるの

〒229-1186 神奈川県相模原市小山 1-15-30 TEL 042-772-5117 FAX 042-774-2314 E-mail:hiroyuki_minamikawa@ohara-inc.co.jp ではないか,またこの現象を利用して新たなガ ラスが創製できないか考えたのである。よって 酸化物ガラス融液に磁場印加を試み,その挙動 について調べた。その結果,非常に興味深い結 果が得られたので,ここでその成果について紹 介する。

2. 実験方法

図.1に、本研究で用いた磁場切り替え型の

図1 実験に使用した磁場印加型酸化物単結晶引き上げ 装置

超伝導磁石を用いた磁場印加型酸化物単結晶引 き上げ装置を示す。磁場は垂直磁場,水平磁場, カスプ磁場に切り替えられるが,今実験におい ては垂直磁場を主に用いた。最大磁場強度は, 垂直磁場で2.0T(テスラ)を発生し,0~2.0 Tまでを約0.2T/minで磁場印加を行った。 使用したルツボは,Pt製50mm\$50mmh× 1.5mmtの高周波加熱用ルツボを用いた。測 温はルツボの底にPR熱電対の先端を接触させ て行い,昇温時の目安とした。また,対流に変 化があるとルツボ底温度に変化があることが分 かっている¹⁰。そこで,ガラス融液の場合でも このルツボ底温度の変化を対流変化の指標とし た。

3. 実験結果

3.1 5種類の酸化物ガラス融液の磁場印加 実験

一般にガラス融液の粘性は結晶融液のそれよ り高いため、仮に磁場による融液対流の駆動力 が弱いと、その効果が粘度によって阻止される 可能性がある。磁場による渦巻き状の流れが観 察された LiNbO₃ 融液の粘性は融点付近で約 1.0 p (ポアズ) 程度であるため², なるべく熔 解温度でこの値に近い値を持った低粘性ガラス を選択した。選択したガラスは代表的なガラス ネットワークフォーマー $(B_2O_3, SiO_2, P_2O_5,$ GeO₂:以下NWFと略)を含有する4種のオ ハラ社製光学ガラス (La₂O₃-B₂O₃, TiO₂-SiO₂, $Nb_2O_5 - P_2O_5$, $La_2O_3 - GeO_2$ 系ガラス), 及び NWF を含まない赤外線透過用として開発された³Bi₂ O_3 -PbO-Ga₂O₃ 系ガラス (Bi₂O₃: PbO:Ga₂O₃= 27:56:17 モル比), そして組成を単純化した BaO-P₂O₅ (BaO: P₂O₅ = 48:52 モル比)の合 計6種である。これらを所望の組成に調合,混 合し,熔融後,流し出してカレットを作製した。 これを白金ルツボ中で再熔融後,磁場を0~2.0 Tの範囲で印加した。この間,融液を観察する ために表面の流れを真上から CCD カメラでモ ニターし VTR で観察を行った。まず4種の代 表的な NWF を含有した光学ガラスのガラス融 液表面の対流を観察したが,いずれのガラス融 液も透明な融液であったため変化が観察でき ず,最大磁場 2.0 T を印加しても宮沢ら¹¹が単 結晶融液で観察した渦巻き状の対流変化も目視 で観察することはできなかった。また融液対流 に変化がある際の指針となるルツボ底温度の変 化も変化が見られなかった。

一方,27 Bi₂O₈-56 PbO-17 Ga₂O₈ ガラスは赤 外透過用ガラスとして開発され,高い非線形光 学効果を持つガラスとして報告されている⁴。 このガラスの特徴は上に挙げた代表的な NWF の含有なしで安定なガラスを形成する。このガ ラスについても先の実験同様,熔解温度での融 液表面の観察を行ったところ,鮮明なスポーク パターン(放射状の対流)を観察することがで きた(図.2(a))。ルツボ底温度が一定になった 後,磁場を印加していった。その結果を表.1 に示す。

印加磁場 0.2 T あたりから融液の中心部に変 化が起こり、印加磁場強度の増加とともに渦巻 き状の流れを形成していくのが観察された (図.2(b))。そして、最大磁場 2.0 T 付近では中 心対称性のよい大きな渦巻き状の流れになって いた。るつぼ底温度も磁場印加とともに変化 し、最大 20℃ ほどの上昇が確認され(図.3)、 中心対称性がよくなるとともにるつぼ底温度も 下降していった。

この結果,この渦巻き状の流れはるつぼ底に まで及んでいることもわかった。また,磁場強 度を下げていくと渦巻き状の流れの回転速度は 減少していき,磁場強度に対して可逆的である ことも確認された。なおこのガラスは実験終了 後,約3hで室温まで冷却したが,実験前と同 様失透の無い赤褐色を帯びた透明なガラス状態 を保っていた。

3.2 BaO-P₂O₅ ガラス融液の磁場印加実験

代表的な NWF を含んだ弊社光学ガラス融液 において磁場環境下による融液の対流に変化が

(b)
図2 27 Bi₂O₃=56 PbO=17 Ga₂O₃ ガラス融液の流れ
(a)磁場印加なし
(b)最大磁場 2.0 Tの磁場印加時

なかったことを確認した。しかしこれはルツボ 底温度の変化を基準に判断したものであり,ガ ラス融液が上記 27 Bi₂O₃-56 PbO-17 Ga₂O₃ ガラ ス融液のようにスポークパターン(融液表面に

図3 27 Bi₂O₃-56 PbO-17 Ga₂O₃ ガラス融液の磁場によ るるつぼ底温度の変化(ΔT=T_H-T₀: H= 0~2.0 T)

現れる放射状の対流線:図2(a)参照)を示すも のがなく、透き通って見えていたため、わずか な対流変化は検出しづらいという問題があっ た。そこで、わずかな対流変化を視覚的に捉え るため、融液中に発生する泡の流れを観察しよ うと考え、組成を単純化した48 BaO-52 P2O5 ガラス融液にて実験を行うことにした。BaO-P₂O₅2成分系ガラスはバリウム原料中(原料形) 態:BaCO₃)の炭酸ガスが溶解温度付近で泡と なって多量に放出することがわかっている。実 際にこのガラス融液を昇温していったとこ ろ,900℃ ぐらいから融液全体に大量の泡がル ツボ付近から発生し,自然対流とともに泡も流 れていることが確認された。その後,1000℃ で融液中の泡の発生がおさまり、ルツボの中心 部分のみに泡が集まった状態となったため、磁 場を印加し、その挙動を観察した。磁場印加前 の泡の状況はルツボ壁付近から発生した泡が、 自然対流とともに中心部に向かって流れ、ルツ ボ底中心部に常に数十~百個近くの泡が溜まっ ている状態であった。

表1 27 Bi₂O₃-56 PbO-17 Ga₂O₃ ガラス融液の磁場印加結果

組成系	27B i 203-56Pb0-17Ga203
実験温度(°C)	1160
粘性(Pポアズ)	0. 7
磁場による対流変化	磁場印加とともに渦巻き状の対流に変化
るつぼ底温度の変化	最大 20℃以上の温度上昇を確認(磁場=1.2T時)

磁場を印加していったところ, 0.4 T 付近か ら泡の流れに変化はないものの、泡の数が減少 しはじめ、1.0Tで泡は数個となり、1.4Tを 超えると1~2個の泡が発生しては消えていく という状態となった。しかし、この状態は最大 2.0Tの磁場を印加しても変化なく、泡が全く 無くなるということはなかった。また融液の対 流変化については泡の動きを見る限り変化をす ることはなく、対流変化を表すルツボ底温度の 変化も一貫して変化を示すことはなかった。な おこの現象は可逆的であり、2.0 T~0 T まで 下げていく過程では印加磁場1.0T以下から泡 は再び発生しはじめ、0Tで初期の数十~百個 近くの泡がルツボ底に溜まっている状態となっ た。そして磁場印加実験終了後、数時間で室温 まで冷却し、ガラスを確認したところ、実験前 と同様失透のない無色透明なガラス状態を保っ ていることも確認された。

以上の結果から、この48 BaO-52 P₂O₅ ガラ スに関しては磁場による融液の対流変化は起こ らないことを確認したものの、磁場印加によっ て融液中の泡を消滅させることができるという 新しい事実を見出すことができた。

そこで,この実験結果を踏まえ,今度は磁場 印加したまま融液を冷却してガラスを取得し. 磁場印加していないガラスと比較観察すること にした。同時にガラス製造時の清澄剤として一 般的に用いられている Sb₂O₃ を 0.1 mol%導入 したガラス組成 0.1 Sb₂O₃-48 BaO-51.9 P₂O₅ に ついても同様の磁場印加実験を行い、ガラスを 取得して3種類の比較を試みようと考えた。比 較観察するにあたっては、ガラスをそのままの 状態でルツボから熱をかけずに取り出す必要が あるため、Pt ルツボ以外のルツボを検討した。 その結果、予備試験でアルミナ製ルツボでも先 の実験と同様の現象、結果が得られた。よって 実験はアルミナ製ルツボを用いて、先の実験と 同様の条件のもと、印加磁場2.0Tの磁場をか けたまま冷却を行い、アルミナ製ルツボからガ ラスを取り出し、比較した。その結果を図.4

(b) 図 4 48 BaO-52 P₂O₅(mol%) ガラス (a)通常冷却品 (b)磁場印加冷却品

図5 0.1 Sb₂O₃-48 BaO-51.9 P₂O₅(mol%) ガラス(磁 場印加冷却品)

及び図.5に示す。図からわかるように磁場印 加しないでそのまま冷却したものは数 mm あ る大きな泡と1mm 以下の小さな泡が中心部分 に多数混在しているのが観察された。一方、磁 場を印加しながら冷却して作製したガラスにつ いては、大きな泡が中心部底に1個だけ存在 し、1mm以下の小さな泡は数個しか観察され なかった。この結果、ガラス中の泡の数が磁場 の影響によって減少していることが明らかとな り、磁場は48 BaO-52 P₂O₅ ガラス融液の対流 変化を起こさないまでも、融液中の脱泡に影響 を与えるという新しい事実を確認することがで きた。また, 0.1 Sb₂O₃-48 BaO-51.9 P₂O₅ ガラ スについては外見上, Sb₂O₃を導入していない ものと比較して変化は見い出せなかったが、ガ ラス試料の内部について顕微鏡を使って詳細に 観察したところ,48 BaO-52 P₂O₅ ガラスには 存在していた1mm以下の泡が無くなっている ことが確認された。この結果、通常泡切れのた めの清澄剤として効果を発揮する Sb₂O₃の導入 は磁場印加により、相乗効果として脱泡を促進 させることが可能であることがわかった。

4. 考察

はじめに代表的な NWF 成分を含んだオハラ 社製光学ガラスおよび 27 Bi₂O₃-56 PbO-17 Ga₂ O₃ガラスの5種類のガラス融液について磁場 印加を試みたが、磁場による融液対流の変化を 観察することができたのは、27 Bi₂O₃-56 PbO-17 Ga₂O₃ ガラス融液のみであった。NWF 成分 を含まないガラスについてのみ、磁場による融 液の対流変化が起こったことから,磁場印加に よる対流変化は NWF 成分と大きく関係してい るものと考えられた。酸化物単結晶融液が磁場 印加によって渦巻き状の対流に変化する原因 が、ローレンツ力によるものと考えられている ことから,NWF 成分を含んだ光学ガラス融液 が磁場による融液対流の変化を示さなかったの は、融液がガラスと同様のネットワーク構造を 保持しており,大きなクラスターを形成してい るため,各構成元素が独立したイオンとして振 る舞うことができなく,そのため磁場印加によ る対流変化が起きなかったのではないかと考え られる。

一方,27 Bi₂O₈-56 PbO-17 Ga₂O₈ ガラス融液 については、磁場による大きな渦巻き状の流れ が観察された。このガラスの融液は NWF によ る強い結合力を持ったネットワーク構造がない ことにより、融液中の構造単位のサイズが小さ いため、ガラス融液でも結晶融液に近い状態で 融液構造が存在できたためではないかと考え る。また、仮にネットワーク構造を形成してい ても、この系のガラスは屈折率が極めて高く(n_d ≥2.0)⁴、分極性が高い。したがって、イオン 的な振る舞いが可能となり、単結晶融液と同じ ように磁場による融液の渦巻き状の流れが起き たのではないかということが考えられる。

48 BaO-52 P₂O₅ ガラス融液に対する磁場印 加実験ではガラス融液中の泡の挙動を注意深く 観察したが磁場による融液の対流変化を観察す ることはできなかった。この結果は上記考察か ら、P₂O₅の結合力の強さに原因があるものと 考えられる。しかし、磁場印加による融液の対 流変化は観察されなかったものの、磁場印加に よる融液中の泡の消滅という新事実を見い出す ことができた。これは熔融温度でしばらく放置 したことによる自然な泡切れ現象が起きたわけ ではなく,印加磁場を下げていくと再び泡がる つぼ壁付近から発生した。通常、るつぼ壁付近 から発生した泡は、融液表面に浮上して、泡同 士の衝突等によって消滅していく。しかし、今 回は磁場印加とともにるつぼ壁付近からの泡の 発生が抑えられ、結果として泡の数が減少し、 あたかも泡が消滅していくように観察されたも のと思われる。この原因は、磁場による酸素ガ スの融液への溶解の促進が考えられた。北沢ら は⁵⁾,水への磁場印加により,水中に溶存する 酸素濃度の平衡に到達するまでの溶解速度を調 べた。その結果、常磁性体である酸素の溶解速 度の大きな促進が認められたことを報告してい

る。しかし,この現象は今回の実験結果のよう に、1.0 T 以下の磁場で発見されたものではな く、2.0 T~10.0 T の強磁場中で確認されたも のであるため、その原因とは考えにくい。観察 結果は磁場印加により融液の構造等に何らかの 影響を与え、ガスの主成分として考えられてい る酸素の過飽和度が上昇し、ガスの発生率が減 少することによって、融液中で消滅したように 見えたものと考えられる。しかし、この現象に ついては、磁場印加によるデータも少なくまだ 明確な説明ができない。

磁場印加中でガラス融液の冷却を行い、ガラ スを取得した実験では、ガラス中に大きな泡が 一個だけるつぼの底に残っていた。通常、泡は 融液中で発生しても,ある程度の大きさになる とその浮力によって融液表面に浮上し,破裂し てしまう。しかし、今回の実験では泡は浮上せ ずるつぼの底付近に存在した。若山は、磁気浮 力という概念から,水中に存在する酸素ガスを 磁場によって移動させることに成功した。。こ の考えから、 泡の主成分として考えられる常磁 性体の酸素分子が、強い磁場印加によって押さ えられているという可能性が考えられる。しか し,磁場の向きを逆にしても,泡の位置に変わ りがないことが確認された。この泡の原因は、 磁場印加中でも底部に存在する 1~2 個の泡は 消えることがなかったため,冷却過程で融液中 の圧力が変化し、残存していた泡が真空泡とな って膨らんだものではないかと考えられる。

0.1 Sb₂O₃-48 BaO-51.9 P₂O₅ ガラス融液も磁 場印加による冷却を試みた。48 BaO-52 P₂O₅ ガラスと比較すると,泡については Sb₂O₃ の脱 泡効果と相まって,脱泡効果が促進され,1.0 mm 以下の小さな泡を殆ど消滅させることがで きた。磁場印加による脱泡は,通常の清澄剤 Sb₂ O。を用いた脱泡とはそのメカニズムが異なっ ているが、お互いの脱泡作用の相乗効果により 新しいガラスの脱泡方法が見い出されたものと 考えられる。

今回発見した磁場印加による脱泡作用は,こ れまで毒性が強く,環境問題で大きな問題とな っている清澄剤(As₂O₃等)を減少もしくは排 除でき,短時間,非接触で大きな脱泡効果を得 ることのできる全く新しいガラスの製造方法を 提案することができたと考えられる。

5. おわりに

本稿は磁場中における酸化物ガラス融液の挙 動について旧無機材質研究所(現 独立行政法 人物質・材料研究機構)と共同研究を行い,そ の結果についてまとめたものである。

まだ解明できていない部分を多く残している が、今後、同様の研究が広く行われ、磁場とガ ラスの関係について新たな発見、解明されてい くことに期待したい。

参考文献

- 1) Y. Miyazawa, S. Morita, H. Sekiwa, J. Crystal Growth 166, 286–290 (1996)
- 2) K. Shigematu, Y. Anzai, S. Morita J. J. Appl.Phy Vol. 26–12, 1988–1996 (1987)
- 3) H. Dumbaugh *Phys. Chem. Glasses* Vol. 273, 119–123 (1986)
- 4) I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, N. F. Borrelli, *J. Opt. Soc. Am.* B 12(11), 2053–59 (1995)
- 5) H Kitazawa, "Kyouso-zoufuku ni kansuru Kenkyu," Kyouso-zoufuku Kenkyukai, [3] 81-91 (1998). 北沢宏一,協奏増幅に関する研究 協奏増幅 研究会 [3] (1998) pp. 81-91
- N. Wakayama, J. Japan Inst. Metals, 61, 1272–77 (1997).