特 集 ガラスの精密加工技術

StM 法による超半球型微小光学ガラスの作製 とその光機能

東京工業大学大学院理工学研究科物質科学専攻

矢野 哲司

Preparation of Micrometer-size Super Spherical Glass for Optical Devises by StM Technique

Tetsuji YANO

Department of Chemistry and Materials Science, Tokyo Institute of Technology

はじめに

より詳細な多くの情報を取り扱うための新し い手法がさまざまなアプローチにより開発され ている。画像,イメージなどを極微細な素子を 通して授受するようになり,ナノレベルの微細 な領域を利用した情報伝達を行う素子の開発に つながっている。より精細な画像情報を取り込 むレンズの開発や高感度の化学情報の検出に用 いられるセンサーもその例である。複雑な構造 で達成し得る物理現象もあれば単純な形状でも それを突き詰めることで桁違いの性能を達成し 得るもののある。本稿で取り上げる超半球型ガ ラスは,「真球」,「真円」を突き詰めることに より,高い光学機能を生み出す。ガラスに特有 の性質を利用することで,それらは可能になっ てくる。

〒152-8550 目黒区大岡山 2-12-1-S 7-4 TEL 03-5734-2523 FAX 03-5734-2845 (共通) E-mail:tetsuji@ceram.titech.ac.jp ガラスは、ガラス転移温度以上の温度に加熱 することで液体状態となる。この液体は、極め て粘性の高い液体であるが、同時に表面張力も 大きいことで知られている。23、72、485 mJ/ m²のという値は、それぞれエタノール、水、 水銀の表面張力である。高い表面張力は、表面 積を小さくするように液体に形状変化を誘起す る。蓮の葉の上の水滴のように、濡れ性の低い 表面上では球状を呈する。ガラス融液の表面張 力は、組成によって異なるが、一般的なケイ酸 塩ガラスならばおおよそ 300 mJ/m² 程度の値 を持つ [1]。水よりも数倍も高い表面張力を持 つ液体である。蓮の葉の水滴のように、ガラス 液滴を濡れ性の低い基板の上においた場合、ガ ラス液滴は球状に変化する。

本稿で紹介するStM法(Surface-tension Mold technique)は、超半球状のガラスを作製 するために我々が名付けた手法である。超半球 とは、球の一部を平面で切り取った半球以上の 大きさの球のことを指す。ここに、毛管長(Capillary length)と呼ばれる表面張力が作用する

図1 StM 法による超半球形状の成形.

臨界長を表す尺度がある[2]。

$$\kappa^{-1} = \sqrt{\frac{\gamma}{\rho g}} \tag{1}$$

y は液体の表面張力, ρ は密度, g は重力加 速度である。 $\gamma = 300 \text{ mJ/m}^2$ の場合,毛管長 は, $\kappa^{-1} \sim 3 \text{ mm}$ となる。このことは、もし液 滴の大きさ(半径 R)がこの毛管長よりも十分 小さい場合,球の形状を決定する因子は表面張 力が支配的になり、重力による影響を極めて小 さいものにすることができることを意味する。

図1は、高温下で基板上に形成されているガ ラス液滴に働く力のうち、気液固3相界面に働 く力に関する Young の式を表している。

$$\gamma_{\rm s} = \gamma_{\rm L} \cos + \gamma_{\rm SL} \tag{2}$$

γ_L, γ_S, γ_{SL}は,液体の表面張力,固体の 表面張力,固液間の界面張力であり, θは接触 角と呼ばれる。Rがマイクロメートルから数百 マイクロメートルのオーダーとなると,重力に よる影響が大きく低減する。基板に接触してい る部分以外は,気液自由表面であり,滑らかな 表面を保ちながら冷却され,ガラス状態に凍結 される。

こうして得られる微小な超半球形状を有する ガラスを μ -SSG(μ -Super-Spherical Glass) と呼んでいる。図2に作製された μ -SSGの SEM像を示す。この特徴的な形状が種々の光 学機能を発現する。特に液滴状態を経て得た自

10 µm

図2 StM 法によって作製した µ-SSG の SEM 像.

由表面は,機能の飛躍的な向上をもたらしてく れる。以下,μ-SSGの示す機能について紹介 する。

マイクロメーターサイズソリッドイ マージョンレンズ (μ-SIL)

光の回折限界をいかにしてクリアするかにつ いて、さまざまな取り組みがされてきた[3]。 最初にあげるソリッドイマージョンレンズ (Solid Immersion Lens)は、その中のひとつ のであり、エバネッセント光を用いることで、 光の波長よりも小さいのものを光で見ようとい うものである。固浸レンズと邦訳され、液浸レ ンズと同じ特性を実現することを目的として提 案された。通常、対物レンズにより分解できる 大きさは光の回折限界により、

$$\mathbf{r}_0 = \frac{\mathbf{0.61}\,\lambda}{\mathbf{n}\cdot\sin\theta} \tag{3}$$

に制限される。λは対物レンズの下の媒質中を 伝わる光の波長,nはその媒質の屈折率であ る。もし,対物レンズの下を高い屈折率の媒質 で満たせば,n・sinθ(=NA:開口数)を大 きくすることができ,分解能を上げることがで きる。液浸レンズはこのような原理を用いてい る。1990年,MansfieldとKinoは,液浸部分 をガラスに置き換えた固浸レンズを発明した [4]。図3はその固浸レンズの模式図である が,超半球型の場合,区別できる大きさは通常

の対物レンズに比べ1/n²となる。屈折率の大 きな材料で構成するとさらに有利となる。球面 部上方から入射された光は底面平坦部で全反射 し、平坦部の反対側に生じるエバネッセント波 が超解像を実現する。このエバネッセント波 は、超半球内の光と同じ波長を持ち、染み出す 長さは波長の1/4程度であるため、底部と観 察面を100 nm 程度まで近付けておく必要があ る。超半球型レンズに要求される加工精度は、 少なくとも波長の数分の1と非常に高く[5]、 球面部は限りなく真球に近く、平坦部の位置に は厳密にあるべき位置が決められる。

StM 法は、ガラス融液の大きな表面張力を 利用することで、SIL に必要な超半球形状その ものを一度に作製することを可能にする。R≪ κ⁻¹を満たすことによって形状の精度を向上で きる。ところで SIL 素子として必要な形状因 子から幾何学的に以下の関係が満たされなけれ ばならない。

$$\mathbf{n} = -\frac{1}{\cos\theta} \tag{4}$$

すなわち,屈折率と接触角には満たすべき関 係がある。図4に組成,20 Na₂O-10 CaO-xB₂O₃ - (70-x) SiO₂ [mol%] で表されるガラス液 滴がガラス状炭素基板上で液滴を形成するとき の接触角θとnの関係を示す[6]。SiO₂成分 の一部をB₂O₃ に置き換えることでθの値を変 化させることができ上式を満足させることが出

図4 SIL における接触角と屈折率の関係(式4)と Na₂ O-CaO-B₂O₃-SiO₂ ガラスでの実測値.

来る。つまり,組成を最適化することで,接触 角も一義的に決定することができ,SILを熱処 理するだけで所望の形状に成形することができ る。

図5は,直径約30 μ mの μ -SSGを使って LSI チップ表面を観察した様子を示したもので ある。左図の幅 1.3 μ mのストライプ構造の上 面には,約20 nmの凹凸の構造があることが AFMの測定から確認されている。この微細な 構造が μ -SSGを通して明瞭に映し出されてい る(右図)[7]。StM法で形成されたガラス素 子が μ -SIL素子として機能していることを表 している証拠であり,横方向の空間分解能も理 論値どおりの値が得られていることが確認され ている。当然予想されるように,屈折率の大き なガラスを用いて作製できることが望ましく, ガラスでは屈折率2程度の材料での作製が望ま しい。その場合,式(4)を満たすような接触角で なければならない。

超半球型微小光共振器(μ-SSG-Optical cavity)

光がある一定の空間内を打ち消し合うこと無 く繰り返し反射しながら存在する光共振器は, 高い光子密度(高強度の電界集中)を生じ,反

図 5 μ-SIL を用いた LSI チップ表面観察.約 20 nm の凹凸像が観察される. 白いバーは 20 μm.

転分布,誘導放出,非線形光学現象など光学的 に特異な性質を生み出す素子となる。球面を利 用した光共振器は,屈折率の異なる球形の光学 界面内で電磁波の定在波が形成される。その波 動関数は波動光学によって定式化され [8], 球 の屈折率とサイズ,周囲の屈折率によってある 特定の波長で共振状態をとる(モードを形成す る)。このモードのことを「ささやきの回廊モー ド (Whispering Gallery Mode)」と呼ぶ。完 全な球はもちろんだが, StM 法によって成形 された超半球ガラスも,底部の平坦部をのぞい て真球度の高い球面を持つことから, WGM の 形成が可能であり、共振器構造として高い性能 (Q値)を持ちうる。底部が一部取り除かれて いることは、たち得るモードに制限がかかるこ とであるが、別な見方をすると、完全な球状と なっているものに比べ生成するモードに指向性 があるということになる。直感的にわかるよう に、µ-SSGの赤道面に定在する波は、安定し て生成される WGM のひとつであり、これを 利用してレーザー発振や誘導ラマン増幅などを 発現することが可能となってくる。

μ-SSG にどのように WGM が生成するか, さらにどのような光物性が発現するかを確認す るには、ガラスに発光中心となるイオンを添加 すればよい。図6は、ソーダ石灰ガラスに発光 イオンである希土類金属酸化物 Eu₂O₃ をドープ し、μ-SSG としたガラス素子にレーザー光を 照射して得られた蛍光スペクトルである [9]。 レーザービームはµ-SSGの赤道面に入射する ように実験を行なった。観測されるスペクトの 特徴は、バルクで観測される発光スペクトルの 上に鋭いスパイク状の発光線が複数本,規則正 しく生じることである [10]。発光線の鋭さが 先鋭であるほど, 光共振器のQ値が高いこと を意味し、共振器の性能が高い。このスペクト ルから、u-SSG が光共振器として機能してい ることがわかる。図7はNd₂O₃をドープした u-SSG から観測されたスペクトルの例であ り、ブロードな蛍光成分はほとんどなく、スパ イク状の発振線だけからなる。これは、この球 がレーザー動作しているためで、発振線の幅は 装置の観測限界以下であり、Q 値は少なくとも 10⁴ 以上である。Q 値の高さは, StM 法の特徴 である液滴の自由表面から形状が作られるとい う点にある。ガラス特有の高い表面張力は、液 滴を真球(真円)に近づけ、その結果得られる μ-SSG は理想的な球状光共振器へと近づいて いく。

4. 高屈折率ガラスの超半球化(StM 処 理)

これまでに述べたように,ガラス液体の持つ 特有の性質を利用することで,μ-SSGと呼ば れる滑らかな表面を持ち,真球度の高い超半球 ガラスを作製することが可能である。一方,ガ

図7 Nd₂O³で付活した*μ*−SSGからの蛍光スペクト ル.

図6 Eu₂O₃で付活した*µ*-SSGからの蛍光スペクト ル. 鋭い線は WGM 共振によるもの.

図8 高屈折率ガラスで作製した µ-SSG の SEM 像.

ラスにはさまざまな組成のものが存在し,それ らの中から物性値もいろいろな値を自由に選択 することが可能である。光物性では,高屈折率 を有するガラスが魅力的な物性を示してくれ る。しかし,近年の非鉛化は,高屈折率ガラス の熱的安定性を低下させてしまうため,StM 法で高屈折率ガラスを成形する場合には,結晶 化による失透を回避する熱処理プロセスが必要 である。ガラスレンズの成形と同じようにStM 法もガラスの過冷却状態を経る成形プロセスで あるため、ガラスの熱的安定性が問題となる。

図8は、屈折率 1.72 と 1.79 の非鉛系ガラス から作製した μ -SSG である [11]。鉛を含ま ない系であるため、結晶化しやすく、熱処理プ ロセスに工夫を施すことで形の整った高屈折率 μ -SSG が作製できる。

5. μ-SSG アレイ

サイズに分布のないμ-SSGの作製すること を考慮し,StM処理を行う前のガラス微小片

図 9 μ-SSG アレイの作製工程の流れ図.

図 10 作製した *µ*-SSG アレイ.(上)上部からの SEM 像.(下) 横からの SEM 像.

のサイズ/位置を制御するため, 微細加工技術 を利用した方法を紹介する[12]。図9に、ア レイ状u-SSGの作製フローを示す。u-SSG アレイの作製に必要な工程は「ガラス箔の作 製」、「基板への接着」、「リソグラフィー」、 「StM 法による超半球化」の4つである。ガラ ス箔をブローイング法によって作製し、厚み約 10 µm のガラス箔を得る。これをガラス液滴と 濡れ性の悪いグラッシーカーボン基板に押し付 け接着する。続いてリソグラフィの手法を使っ てガラス箔をタイル状に加工し、大きさの等し いガラス素片が規則正しく並べられた基板を作 製する。この基板を StM 法による処理を施す ことで、 各素片がガラス液滴となって超半球状 に変形し、最終的にアレイ状に並んだ µ-SSG 群が得られる。図10に、アレイ状に配列させ たµ-SSG アレイの SEM 像を示す。得られた

 μ -SSGは、粒径が27(±2 μ mと狭い分布と して得られ、接触角 θ =133°となっている。 この接触角は、式(4)を満足するもので、こられ はすべて SIL の機能を有している。形状、配 置の高精度の制御には微細加工の精度を向上さ せることで対応できる。

6. おわりに

本稿では、高温のガラス融液のもつ高い表面 張力と基板との濡れ性を利用した超半球形状の 微小ガラス(µ-SSG)を作製する StM 法と、 µ-SSG の光機能について紹介した。また、リ ソグラフィーとの組み合わせによって粒径の均 一化とµ-SSG の配列化へと発展させることが 出来ることを示した。StM 法は、多数の形状 の整った素子をガラス融液の性質を利用するこ とで一度に大量に簡便に作製することができ る。今後,様々な機能素子の作製を可能にする 技術として利用できるものと期待され,研究を 続けている。

引用文献

- [1] 例えば, N.P.Bansal and R.H.Doremus: Handbook of Glass Properties, p. 101 (Academic Press, Orland, 1986).
- [2] ドゥジェンヌ, ロシャール-ウィアール, ケレ (奥 村剛訳) :表面張力の物理学, p.32 (吉岡書店, 2003 年).
- [3] 大津元一,河田聡,堀裕和編:ナノ光工学ハンド ブック,(朝倉書店,2002).
- [4] S. M. Mansfield and G. S. Kino: Appl. Phys. Lett. 57, 2615 (1990).

- [5] M. Yoshita, K. Koyama, Y. Hayamizu, M. Baba and H. Akiyama: Jpn. J. Appl. Phys. 41, L 858 (2002).
- [6] T. Kishi, S. Shibata and T. Yano, J. Non-Cryst. Solids, 354, 1756 (2008).
- [7] T. Yano, T. Kishi and S. Shibata, Appl. Phys. B, 83, 67 (2006).
- [8] G. Mie, Ann. Phys. 25, 377 (1908), P. Debye, Ann. Phys. 30, (1913).
- [9] T. Kishi, S. Shibata and T. Yano, Proc. XX International Congress on Glass, O-14-022, (2004).
- [10] S. C. Hill: Optical Effects Associated with Small Particles, eds. P. W. Barber and R. K. Chang, (World Scientific, Singapore, 1988).
- [11] T. Kishi, S. Shibata and T. Yano, J. Non-Cryst. Solids, 354, 558 (2008).
- [12] T. Kishi, S. Shibata and T. Yano, Proc. SPIE, 6126, 253 (2006).